【題目】解關于x的不等式12x2﹣ax>a2(a∈R).
【答案】解:由12x2﹣ax﹣a2>0(4x+a)(3x﹣a)>0(x+ )(x﹣
)>0, ①a>0時,﹣
<
,解集為{x|x<﹣
或x>
};
②a=0時,x2>0,解集為{x|x∈R且x≠0};
③a<0時,﹣ >
,解集為{x|x<
或x>﹣
}.
綜上,當a>0時,﹣ <
,解集為{x|x<﹣
或x>
};
當a=0時,x2>0,解集為{x|x∈R且x≠0};
當a<0時,﹣ >
,解集為{x|x<
或x>﹣
}
【解析】把原不等式的右邊移項到左邊,因式分解后,分a大于0,a=0和a小于0三種情況分別利用取解集的方法得到不等式的解集即可.
【考點精析】利用解一元二次不等式對題目進行判斷即可得到答案,需要熟知求一元二次不等式解集的步驟:一化:化二次項前的系數(shù)為正數(shù);二判:判斷對應方程的根;三求:求對應方程的根;四畫:畫出對應函數(shù)的圖象;五解集:根據(jù)圖象寫出不等式的解集;規(guī)律:當二次項系數(shù)為正時,小于取中間,大于取兩邊.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐中,四邊形
為梯形,
,且
,
是邊長為2的正三角形,頂點
在
上的射影為點
,且
,
,
.
(1)證明:平面平面
;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,一個圓心角為直角的扇形花草房,半徑為1,點
是花草房弧上一個動點,不含端點,現(xiàn)打算在扇形
內(nèi)種花,
,垂足為
,
將扇形
分成左右兩部分,在
左側(cè)部分三角形
為觀賞區(qū),在
右側(cè)部分種草,已知種花的單位面積的造價為
,種草的單位面積的造價為2
,其中
為正常數(shù),設
,種花的造價與種草的造價的和稱為總造價,不計觀賞區(qū)的造價,總造價為
求關于
的函數(shù)關系式;
求當為何值時,總造價最小,并求出最小值。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列和
滿足
若
為等比數(shù)列,且
(1)求和
;
(2)設,記數(shù)列
的前
項和為
①求;
②求正整數(shù) k,使得對任意均有
.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓C的中心在坐標原點,焦點在x軸上,橢圓C上的點到焦點距離的最大值為3,離心率 .
(Ⅰ)求橢圓C的標準方程;
(Ⅱ)若經(jīng)過左焦點F1且傾斜角為 的直線l與橢圓交于A、B兩點,求|AB|的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知 =(1,2),
=(﹣3,2),當k為何值時:
(1)k +
與
﹣3
垂直;
(2)k +
與
﹣3
平行,平行時它們是同向還是反向?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】過△ABC所在平面α外一點P,作PO⊥α,垂足為O,連接PA,PB,PC,若點O是△ABC的內(nèi)心,則( )
A.PA=PB=PC
B.點P到AB,BC,AC的距離相等
C.PA⊥PB,PB⊥PC,PC⊥PA
D.PA,PB,PC與平面α所成的角相等
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】定義平面向量之間的一種運算“⊙”如下:對任意的 ,令
,下面說法錯誤的是( )
A.若 與
共線,則
⊙
=0
B. ⊙
=
⊙
C.對任意的λ∈R,有 ⊙
=
⊙
)
D.( ⊙
)2+(
)2=|
|2|
|2
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com