日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 若a>0>b>-a,c<d<0,則下列命題:

          (1)ad>bc;

          (2)<0;

          (3)a-c>b-d;

          (4)a(d-c)>b(d-c)中能成立的個(gè)數(shù)是

          [  ]
          A.

          1

          B.

          2

          C.

          3

          D.

          4

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          給出下列類比推理命題(其中R為實(shí)數(shù)集,C為復(fù)數(shù)集):
          ①“若a,b∈R,則a-b=0⇒a=b”類比推出“若a,b∈C,則a-b=0⇒a=b”
          ②“若a,b∈R,則a-b>0⇒a>b”類比推出“若a,b∈C,則a-b>0⇒a>b”
          ③“若a,b∈R,則a•b=0⇒a=0或b=0”類比推出“若a,b∈C,a•b=0⇒a=0或b=0”;
          ④“若a,b,c,d∈R,則復(fù)數(shù)a+bi=c+di⇒a=c,b=d”類比推出“若a,b,c,d∈C,則復(fù)數(shù)a+bi=c+di⇒a=c,b=d”
          其中類比結(jié)論正確的個(gè)數(shù)是( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:黑龍江省大慶鐵人中學(xué)2010-2011學(xué)年高二下學(xué)期期末考試數(shù)學(xué)試題 題型:013

          給出下面類比推理命題(R為實(shí)數(shù)集,C為復(fù)數(shù)集,M為向量集),其中類比結(jié)論正確的是

          [  ]
          A.

          由“若a∈R,則a2=|a|2”類比推出“若a∈C,則a2=|a|2”;

          B.

          由“若a,b∈R,且a-b=0,則a=b”類比推出“若,且,則”;

          C.

          “若a,b∈R,且a2+b2=0,則a=0且b=0”類比推出“若a,b∈C,且a2+b2=0,則a=0且b=0”;

          D.

          “若a,b∈R,且a·b=0,則a=0或b=0”類比推出“若,且,則

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

          給出下列類比推理命題(其中R為實(shí)數(shù)集,C為復(fù)數(shù)集):
          ①“若a,b∈R,則a-b=0?a=b”類比推出“若a,b∈C,則a-b=0?a=b”
          ②“若a,b∈R,則a-b>0?a>b”類比推出“若a,b∈C,則a-b>0?a>b”
          ③“若a,b∈R,則a•b=0?a=0或b=0”類比推出“若a,b∈C,a•b=0?a=0或b=0”;
          ④“若a,b,c,d∈R,則復(fù)數(shù)a+bi=c+di?a=c,b=d”類比推出“若a,b,c,d∈C,則復(fù)數(shù)a+bi=c+di?a=c,b=d”
          其中類比結(jié)論正確的個(gè)數(shù)是( 。
          A.0B.1C.2D.3

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年福建省三明市高三(上)期末數(shù)學(xué)試卷(文科)(解析版) 題型:選擇題

          給出下列類比推理命題(其中R為實(shí)數(shù)集,C為復(fù)數(shù)集):
          ①“若a,b∈R,則a-b=0⇒a=b”類比推出“若a,b∈C,則a-b=0⇒a=b”
          ②“若a,b∈R,則a-b>0⇒a>b”類比推出“若a,b∈C,則a-b>0⇒a>b”
          ③“若a,b∈R,則a•b=0⇒a=0或b=0”類比推出“若a,b∈C,a•b=0⇒a=0或b=0”;
          ④“若a,b,c,d∈R,則復(fù)數(shù)a+bi=c+di⇒a=c,b=d”類比推出“若a,b,c,d∈C,則復(fù)數(shù)a+bi=c+di⇒a=c,b=d”
          其中類比結(jié)論正確的個(gè)數(shù)是( )
          A.0
          B.1
          C.2
          D.3

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2013屆黑龍江虎林高中高二下學(xué)期期中理科數(shù)學(xué)試卷(解析版) 題型:解答題

          已知函數(shù)f(x)=alnx-x2+1.

          (1)若曲線y=f(x)在x=1處的切線方程為4x-y+b=0,求實(shí)數(shù)a和b的值;

          (2)若a<0,且對(duì)任意x1、x2∈(0,+∞),都|f(x1)-f(x2)|≥|x1-x2|,求a的取值范圍.

          【解析】第一問中利用f′(x)=-2x(x>0),f′(1)=a-2,又f(1)=0,所以曲線y=f(x)在x=1處的切線方程為y=(a-2)(x-1),即(a-2)x-y+2-a=0,

          由已知得a-2=4,2-a=b,所以a=6,b=-4.

          第二問中,利用當(dāng)a<0時(shí),f′(x)<0,∴f(x)在(0,+∞)上是減函數(shù),

          不妨設(shè)0<x1≤x2,則|f(x1)-f(x2)|=f(x1)-f(x2),|x1-x2|=x2-x1,

          ∴|f(x1)-f(x2)|≥|x1-x2|等價(jià)于f(x1)-f(x2)≥x2-x1,

          即f(x1)+x1≥f(x2)+x2,結(jié)合構(gòu)造函數(shù)和導(dǎo)數(shù)的知識(shí)來解得。

          (1)f′(x)=-2x(x>0),f′(1)=a-2,又f(1)=0,所以曲線y=f(x)在x=1處的切線方程為y=(a-2)(x-1),即(a-2)x-y+2-a=0,

          由已知得a-2=4,2-a=b,所以a=6,b=-4.

          (2)當(dāng)a<0時(shí),f′(x)<0,∴f(x)在(0,+∞)上是減函數(shù),

          不妨設(shè)0<x1≤x2,則|f(x1)-f(x2)|=f(x1)-f(x2),|x1-x2|=x2-x1

          ∴|f(x1)-f(x2)|≥|x1-x2|等價(jià)于f(x1)-f(x2)≥x2-x1,即f(x1)+x1≥f(x2)+x2

          令g(x)=f(x)+x=alnx-x2+x+1,g(x)在(0,+∞)上是減函數(shù),

          ∵g′(x)=-2x+1=(x>0),

          ∴-2x2+x+a≤0在x>0時(shí)恒成立,

          ∴1+8a≤0,a≤-,又a<0,

          ∴a的取值范圍是

           

          查看答案和解析>>

          同步練習(xí)冊(cè)答案