日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知直線的方向向量為及定點,動點滿足,,,其中點N在直線l上.
          (1)求動點M的軌跡C的方程;
          (2)設(shè)A、B是軌跡C上異于原點O的兩個不同動點,直線OA和OB的傾斜角分別為α和β,若α+β=θ為定值(0<θ<π),試問直線AB是否恒過定點,若AB恒過定點,請求出該定點的坐標(biāo),若AB不恒過定點,請說明理由.
          【答案】分析:(1)由題意知:|MF|=|MN|,由拋物線的定義知,點M的軌跡為拋物線,由此能求出軌跡方程.
          (2)設(shè)A(x1,y1),B(x2,y2),由題意得x1≠x2,所以AB的斜率存在,設(shè)其方程為y=kx+b,韋達定理知,當(dāng)時,直線AB恒過定點(-8,0);當(dāng)時,直線AB恒過定點
          解答:解:(1)由題意知:|MF|=|MN|,
          由拋物線的定義知,點M的軌跡為拋物線,其中F(2,0)為焦點,
          x=-2為準(zhǔn)線,
          所以軌跡方程為y2=8x;…(4分)
          (2)設(shè)A(x1,y1),B(x2,y2),
          由題意得x1≠x2(否則α+β=π)且x1,x2≠0,
          所以AB的斜率存在,設(shè)其方程為y=kx+b,
          顯然
          將y=kx+b與y2=8x消去x,得ky2-8y+8b=0,由韋達定理知①…(6分)
          (i)當(dāng)時,即時,
          tanα•tanβ=1,
          所以,
          所以y1y2=64,由①知:,所以b=8k.
          因此直線AB的方程可表示為y=kx+8k,
          即k(x+8)-y=0所以直線AB恒過定點(-8,0)…(8分)
          (ii)當(dāng)時,由α+β=θ,
          得tanθ=tan(α+β)==,…(10分)
          將①式代入上式整理化簡可得:
          所以,
          此時,直線AB的方程可表示為y=kx+

          所以直線AB恒過定點
          當(dāng)時,AB恒過定點(-8,0),當(dāng)時,
          AB恒過定點.…(12分)
          點評:本題主要考查橢圓標(biāo)準(zhǔn)方程,簡單幾何性質(zhì),直線與橢圓的位置關(guān)系,圓的簡單性質(zhì)等基礎(chǔ)知識.考查運算求解能力,推理論證能力;考查函數(shù)與方程思想,化歸與轉(zhuǎn)化思想.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知直線的方向向量為及定點,動點滿足,
          MN
          +
          MF
          =2
          MG
          ,
          MG
          •(
          MN
          -
          MF
          )=0
          ,其中點N在直線l上.
          (1)求動點M的軌跡C的方程;
          (2)設(shè)A、B是軌跡C上異于原點O的兩個不同動點,直線OA和OB的傾斜角分別為α和β,若α+β=θ為定值(0<θ<π),試問直線AB是否恒過定點,若AB恒過定點,請求出該定點的坐標(biāo),若AB不恒過定點,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (09年東城區(qū)期末理)(13分)

           已知橢圓的對稱軸為坐標(biāo)軸,且拋物線的焦點是橢圓的一個焦點,又點在橢圓上.

          (Ⅰ)求橢圓的方程;

          (Ⅱ)已知直線的方向向量為,若直線與橢圓交于、兩點,求面積的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年黑龍江省高三上學(xué)期期末考試文科數(shù)學(xué)試卷 題型:解答題

          已知橢圓的對稱軸為坐標(biāo)軸,且拋物線的焦點是橢圓的一個焦點,又點在橢圓上.

          (1)求橢圓M的方程;

          (2)已知直線的方向向量為  ,若直線與橢圓交于兩點,求面積的最大值.

           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知橢圓的對稱軸為坐標(biāo)軸,且拋物線的焦點是橢圓的一個焦點,又點在橢圓上.

          (Ⅰ)求橢圓的方程;

          (Ⅱ)已知直線的方向向量為,若直線與橢圓交于、兩點,求面積的最大值.

           

          查看答案和解析>>

          同步練習(xí)冊答案