日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知橢圓的中心在坐標(biāo)原點(diǎn)O,焦點(diǎn)在x軸上,斜率為-1且過(guò)橢圓右焦點(diǎn)F的直線交橢圓于A、B兩點(diǎn),且直線x-3y+4=0與向量數(shù)學(xué)公式的平行.
          (I)求橢圓的離心率;
          (II)設(shè)M為橢圓上任意一點(diǎn),點(diǎn)N(λ,μ),且滿足數(shù)學(xué)公式,求N的軌跡方程.

          解:(I)設(shè)橢圓方程為(a>b>0),F(xiàn)(c,0)
          則直線AB的方程為y=-x+c,代入
          化簡(jiǎn)得(a2+b2)x2-2a2cx+a2c2-a2b2=0.
          令A(yù)(x1,y1),B(x2,y2),
          則x1+x2=,x1x2=
          +=(x1+x2,y1+y2),且直線x-3y+4=0的方向向量=(3,1),+共線,
          ∴3(y1+y2)-(x1+x2)=0,又y1=-x1+c,y2=-x2+c,
          ∴3(-x1-x2+2c)-(x1+x2)=0,
          ∴x1+x2=c.
          =c,
          所以a2=3b2
          ∴c=,
          故離心率e==
          (II)由(I)知a2=3b2
          所以橢圓可化為x2+3y2=3b2,F(xiàn)(c,0),
          設(shè)M(x,y),
          由已知

          ∵M(jìn)(x,y)在橢圓上,即(λ-μ)2(x12+3y12)+2(λ22)(x1x2+3y1y2)+(λ+μ)2(x22+3y22)=3b2.①
          由(I)知a2=c2,b2=c2
          ∴x1+x2=,x1x2==c2
          ∴x1x2+3y1y2=x1x2+3(-x1+c)(-x2+c)=4x1x2-3(x1+x2)c+3c2=c2-c2+3c2=0.
          又x12+3y12=3b2,x22+3y22=3b2,
          代入①得λ22=
          故N的軌跡方程為λ22=
          分析:(Ⅰ)直線與橢圓方程聯(lián)立用未達(dá)定理的A、B兩點(diǎn)坐標(biāo)的關(guān)系,據(jù)向量共線的條件得橢圓中a,b,c的關(guān)系,從而求得橢圓的離心率;
          (Ⅱ)用向量運(yùn)算將λ,μ用坐標(biāo)表示,再用坐標(biāo)的關(guān)系求出λ22的值,即得N的軌跡方程.
          點(diǎn)評(píng):考查向量共線為圓錐曲線提供已知條件;處理直線與圓錐曲線位置關(guān)系常用的方法是直線與圓錐曲線方程聯(lián)立用韋達(dá)定理.是高考常見題型且是解答題.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          精英家教網(wǎng)已知橢圓的中心在坐標(biāo)原點(diǎn)O,焦點(diǎn)在x軸上,短軸長(zhǎng)為2,且兩個(gè)焦點(diǎn)和短軸的兩個(gè)端點(diǎn)恰為一個(gè)正方形的頂點(diǎn).過(guò)右焦點(diǎn)F與x軸不垂直的直線l交橢圓于P,Q兩點(diǎn).
          (1)求橢圓的方程;
          (2)當(dāng)直線l的斜率為1時(shí),求△POQ的面積;
          (3)在線段OF上是否存在點(diǎn)M(m,0),使得以MP,MQ為鄰邊的平行四邊形是菱形?若存在,求出m的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知橢圓的中心在坐標(biāo)原點(diǎn),且經(jīng)過(guò)點(diǎn)M(1,
          2
          5
          5
          )
          ,N(-2,
          5
          5
          )
          ,若圓C的圓心與橢圓的右焦點(diǎn)重合,圓的半徑恰好等于橢圓的短半軸長(zhǎng),已知點(diǎn)A(x,y)為圓C上的一點(diǎn).
          (1)求橢圓的標(biāo)準(zhǔn)方程和圓的標(biāo)準(zhǔn)方程;
          (2)求
          AC
          AO
          +2|
          AC
          -
          AO
          |
          (O為坐標(biāo)原點(diǎn))的取值范圍;
          (3)求x2+y2的最大值和最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知橢圓的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上,橢圓上點(diǎn)P(3
          2
          ,4)
          到兩焦點(diǎn)的距離之和是12,則橢圓的標(biāo)準(zhǔn)方程是
           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知橢圓的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上,焦距為6
          3
          ,且橢圓上一點(diǎn)到兩個(gè)焦點(diǎn)的距離之和為12,則橢圓的方程為
          x2
          36
          +
          y2
          9
          =1
          x2
          36
          +
          y2
          9
          =1

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知橢圓的中心在坐標(biāo)原點(diǎn)O,焦點(diǎn)在x軸上,離心率為
          2
          2
          ,坐標(biāo)原點(diǎn)O到過(guò)右焦點(diǎn)F且斜率為1的直線的距離為
          2
          2

          (1)求橢圓的方程;
          (2)設(shè)過(guò)右焦點(diǎn)F且與坐標(biāo)軸不垂直的直線l交橢圓于P、Q兩點(diǎn),在線段OF上是否存在點(diǎn)M(m,0),使得以MP、MQ為鄰邊的平行四邊形是菱形?若存在,求出m的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案