【題目】如圖,已知橢圓的離心率是
,一個(gè)頂點(diǎn)是
.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè),
是橢圓
上異于點(diǎn)
的任意兩點(diǎn),且
.試問(wèn):直線
是否恒過(guò)一定點(diǎn)?若是,求出該定點(diǎn)的坐標(biāo);若不是,說(shuō)明理由.
【答案】(Ⅰ)(Ⅱ)直線
恒過(guò)定點(diǎn)
【解析】
試題分析:(Ⅰ)設(shè)橢圓C的半焦距為c.求出b利用離心率求出a,即可求解橢圓C的方程;(Ⅱ)證法一:直線PQ的斜率存在,設(shè)其方程為y=kx+m.將直線PQ的方程代入消去y,設(shè) P
,Q
,利用韋達(dá)定理,通過(guò)BP⊥BQ,化簡(jiǎn)求出
,求出m,即可得到直線PQ恒過(guò)的定點(diǎn).證法二:直線BP,BQ的斜率均存在,設(shè)直線BP的方程為y=kx+1,將直線BP的方程代入
,消去y,解得x,設(shè) P
,轉(zhuǎn)化求出P的坐標(biāo),求出Q坐標(biāo),求出直線PQ的方程利用直線系方程求出定點(diǎn)坐標(biāo)
試題解析:(Ⅰ)解:設(shè)橢圓的半焦距為
.依題意,得
,
且,
解得.
所以,橢圓的方程是
.
(Ⅱ)證法一:易知,直線的斜率存在,設(shè)其方程為
.
將直線的方程代入
,
消去,整理得
.
設(shè),
,
則,
.(1)
因?yàn)?/span>,且直線
的斜率均存在,
所以, 整理得
.(2)
因?yàn)?/span>,
,
所以,
.(3)
將(3)代入(2),整理得
.(4)
將(1)代入(4),整理得.
解得,或
(舍去).
所以,直線恒過(guò)定點(diǎn)
.
證法二:直線的斜率均存在,設(shè)直線
的方程為
.
將直線的方程代入
,消去
,得
解得,或
.
設(shè),所以
,
,
所以.
以替換點(diǎn)
坐標(biāo)中的
,可得
.
從而,直線的方程是
.
依題意,若直線過(guò)定點(diǎn),則定點(diǎn)必定在
軸上.
在上述方程中,令,解得
.
所以,直線恒過(guò)定點(diǎn)
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,
.
當(dāng)
時(shí),求
的值;
當(dāng)
時(shí),是否存在正整數(shù)n,r,使得
、
、
,
依次構(gòu)成等差數(shù)列?并說(shuō)明理由;
當(dāng)
時(shí),求
的值
用m表示
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)斜率不為0的直線與拋物線
交于
兩點(diǎn),與橢圓
交于
兩點(diǎn),記直線
的斜率分別為
.
(1)求證:的值與直線
的斜率的大小無(wú)關(guān);
(2)設(shè)拋物線的焦點(diǎn)為
,若
,求
面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=xlnx﹣ x2﹣x+a(a∈R).
(1)當(dāng)a=0時(shí),求f(x)的單調(diào)區(qū)間;
(2)若函數(shù)f(x)在其定義域內(nèi)有兩個(gè)不同的極值點(diǎn).
(。┣骯的取值范圍;
(ⅱ)設(shè)兩個(gè)極值點(diǎn)分別為x1 , x2 , 證明:x1x2>e2 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸,建立極坐標(biāo)系,曲線C1的參數(shù)方程為 (θ為參數(shù)),曲線 C2的極坐標(biāo)方程為ρcosθ﹣
ρsinθ﹣4=0.
(1)求曲線C1的普通方程和曲線 C2的直角坐標(biāo)方程;
(2)設(shè)P為曲線C1上一點(diǎn),Q為曲線 C2上一點(diǎn),求|PQ|的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)= ﹣
﹣ax(a∈R).
(1)當(dāng)a= 時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若函數(shù)f(x)在[﹣1,1]上為單調(diào)函數(shù),求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知定義在(0, )上的函數(shù)f(x),f′(x)為其導(dǎo)函數(shù),且f(x)<f′(x)tanx恒成立,則( )
A. f(
)>
f(
)
B. f(
)<f(
)??
C. f(
)>f(
)
D.f(1)<2f( )?sin1
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=cos4x+sin2x,下列結(jié)論中錯(cuò)誤的是( )
A.f(x)是偶函數(shù)
B.函f(x)最小值為
C. 是函f(x)的一個(gè)周期
D.函f(x)在(0, )內(nèi)是減函數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線的焦點(diǎn)為
,
為坐標(biāo)原點(diǎn),
是拋物線
上異于
的兩點(diǎn).
(1)求拋物線的方程;
(2)若直線的斜率之積為
,求證:直線
過(guò)定點(diǎn).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com