日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 在三棱柱ABC-A1B1C1中,底面為棱長(zhǎng)為1的正三角形,側(cè)棱AA1⊥底面ABC,點(diǎn)D在棱BB1上,且BD=1,若AD與平面AA1C1C所成的角為α,則sinα的值是( 。
          A、
          3
          2
          B、
          2
          2
          C、
          10
          4
          D、
          6
          4
          分析:建立空間直角坐標(biāo)系,求出平面AA1C1C的一個(gè)法向量是
          n
          ,和
          AD
          ,計(jì)算cos<
          n
          ,
          AD
          >即可求解sinα,
          解答:精英家教網(wǎng)解:如圖,建立坐標(biāo)系,易求點(diǎn)D(
          3
          2
          ,
          1
          2
          ,1),
          平面AA1C1C的一個(gè)法向量是
          n
          =(1,0,0),
          所以cos<
          n
          ,
          AD
          >=
          3
          2
          2
          =
          6
          4

          即sinα=
          6
          4

          故選D.
          點(diǎn)評(píng):本題考查用空間向量求直線與平面的夾角,考查計(jì)算能力,是基礎(chǔ)題.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          精英家教網(wǎng)已知三棱柱ABC-A1B1C1的三視圖如圖所示,其中主視圖AA1B1B和左視圖B1BCC1均為矩形,在俯視圖△A1B1C1中,A1C1=3,A1B1=5,cos∠A1=
          35

          (1)在三棱柱ABC-A1B1C1中,求證:BC⊥AC1;
          (2)在三棱柱ABC-A1B1C1中,若D是底邊AB的中點(diǎn),求證:AC1∥平面CDB1
          (3)若三棱柱的高為5,求三視圖中左視圖的面積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          精英家教網(wǎng)如圖:在正三棱柱ABC-A1 B1 C1中,AB=
          AA13
          =a,E,F(xiàn)分別是BB1,CC1上的點(diǎn)且BE=a,CF=2a.
          (Ⅰ)求證:面AEF⊥面ACF;
          (Ⅱ)求三棱錐A1-AEF的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          在三棱柱ABC-A1B1C1中,已知AB=AC=AA1=
          5
          ,BC=4,在A1在底面ABC的投影是線段BC的中點(diǎn)O.
          (1)求點(diǎn)C到平面A1ABB1的距離;
          (2)求二面角A-BC1-B1的余弦值;
          (3)若M,N分別為直線AA1,B1C上動(dòng)點(diǎn),求MN的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2012•江西)在三棱柱ABC-A1B1C1中,已知AB=AC=AA1=
          5
          ,BC=4,在A1在底面ABC的投影是線段BC的中點(diǎn)O.
          (1)證明在側(cè)棱AA1上存在一點(diǎn)E,使得OE⊥平面BB1C1C,并求出AE的長(zhǎng);
          (2)求平面A1B1C與平面BB1C1C夾角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2013•北京)如圖,在三棱柱ABC-A1B1C1中,AA1C1C是邊長(zhǎng)為4的正方形.平面ABC⊥平面AA1C1C,AB=3,BC=5.
          (Ⅰ)求證:AA1⊥平面ABC;
          (Ⅱ)求證二面角A1-BC1-B1的余弦值;
          (Ⅲ)證明:在線段BC1上存在點(diǎn)D,使得AD⊥A1B,并求
          BDBC1
          的值.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案