(本小題滿(mǎn)分12分)
已知橢圓,橢圓
以
的長(zhǎng)軸為短軸,且與
有相同的離心率.
(1)求橢圓的方程;
(2)設(shè)O為坐標(biāo)原點(diǎn),點(diǎn)A,B分別在橢圓和
上,
,求直線(xiàn)
的方程.
(1) (2)
或
解析試題分析:.(1)由已知可設(shè)橢圓的方程為
其離心率為,故
,則
故橢圓的方程為
(2)解法一 兩點(diǎn)的坐標(biāo)分別記為
由及(1)知,
三點(diǎn)共線(xiàn)且點(diǎn)
,
不在
軸上,
因此可以設(shè)直線(xiàn)的方程為
將代入
中,得
,所以
將代入
中,則
,所以
由,得
,即
解得,故直線(xiàn)
的方程為
或
解法二 兩點(diǎn)的坐標(biāo)分別記為
由及(1)知,
三點(diǎn)共線(xiàn)且點(diǎn)
,
不在
軸上,
因此可以設(shè)直線(xiàn)的方程為
將代入
中,得
,所以
由,得
,
將代入
中,得
,即
解得,故直線(xiàn)
的方程為
或
考點(diǎn):橢圓方程及性質(zhì)
點(diǎn)評(píng):再求橢圓方程時(shí)要注意焦點(diǎn)的位置,第二問(wèn)中向量關(guān)系轉(zhuǎn)化為坐標(biāo)關(guān)系,A,B兩點(diǎn)坐標(biāo)可將向量與兩橢圓方程聯(lián)系起來(lái)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(滿(mǎn)分13分)
(1)某三棱錐的側(cè)視圖和俯視圖如圖所示,求三棱錐的體積.
(2)過(guò)直角坐標(biāo)平面中的拋物線(xiàn)
的焦點(diǎn)
作一條傾斜角為
的直線(xiàn)與拋物線(xiàn)相交于A,B兩點(diǎn). 用
表示A,B之間的距離;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿(mǎn)分12分)已知直線(xiàn)經(jīng)過(guò)橢圓
的左頂點(diǎn)A和上頂點(diǎn)D,橢圓
的右頂點(diǎn)為
,點(diǎn)
和橢圓
上位于
軸上方的動(dòng)點(diǎn),直線(xiàn),
與直線(xiàn)
分別交于
兩點(diǎn)。
(I)求橢圓的方程;
(Ⅱ)求線(xiàn)段MN的長(zhǎng)度的最小值;
(Ⅲ)當(dāng)線(xiàn)段MN的長(zhǎng)度最小時(shí),在橢圓上是否存在這
樣的點(diǎn),使得
的面積為
?若存在,確定點(diǎn)
的個(gè)數(shù),若不存在,說(shuō)明理由
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿(mǎn)分12分)
在平面直角坐標(biāo)系中,點(diǎn)
到兩定點(diǎn)F1
和F2
的距離之和為
,設(shè)點(diǎn)
的軌跡是曲線(xiàn)
.(1)求曲線(xiàn)
的方程; (2)若直線(xiàn)
與曲線(xiàn)
相交于不同兩點(diǎn)
、
(
、
不是曲線(xiàn)
和坐標(biāo)軸的交點(diǎn)),以
為直徑的圓過(guò)點(diǎn)
,試判斷直線(xiàn)
是否經(jīng)過(guò)一定點(diǎn),若是,求出定點(diǎn)坐標(biāo);若不是,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿(mǎn)分13分)
已知橢圓的中點(diǎn)在原點(diǎn)O,焦點(diǎn)在x軸上,點(diǎn)是其左頂點(diǎn),點(diǎn)C在橢圓上且
·
="0," |
|=|
|.(點(diǎn)C在x軸上方)
(I)求橢圓的方程;
(II)若平行于CO的直線(xiàn)和橢圓交于M,N兩個(gè)不同點(diǎn),求
面積的最大值,并求此時(shí)直線(xiàn)
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿(mǎn)分14分)
已知橢圓的離心率為
,短軸一個(gè)端點(diǎn)到右焦點(diǎn)的距離為
.
(1)求橢圓的方程;
(2)設(shè)直線(xiàn)與橢圓
交于
兩點(diǎn),坐標(biāo)原點(diǎn)
到直線(xiàn)
的距離為
,求
面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題滿(mǎn)分12分)設(shè)橢圓E: (a,b>0)過(guò)M(2,
) ,N(
,1)兩點(diǎn),O為坐標(biāo)原點(diǎn).
(Ⅰ)求橢圓E的方程;
(Ⅱ)是否存在圓心在原點(diǎn)的圓,使得該圓的任意一條切線(xiàn)與橢圓E恒有兩個(gè)交A,B且?若存在,寫(xiě)出該圓的方程,若不存在說(shuō)明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在平面直角坐標(biāo)系中,拋物線(xiàn)C的頂點(diǎn)在原點(diǎn),焦點(diǎn)F的坐標(biāo)為(1,0)。
(1)求拋物線(xiàn)C的標(biāo)準(zhǔn)方程;
(2)設(shè)M、N是拋物線(xiàn)C的準(zhǔn)線(xiàn)上的兩個(gè)動(dòng)點(diǎn),且它們的縱坐標(biāo)之積為,直線(xiàn)MO、NO與拋物線(xiàn)的交點(diǎn)分別為點(diǎn)A、B,求證:動(dòng)直線(xiàn)AB恒過(guò)一個(gè)定點(diǎn)。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com