已知圓C:x2+y2+2x-4y+3=0,若圓C的切線在x軸、y軸上的截距相等,求切線的方程.
切線方程為或x+y+1=0或x+y-3=0.
解析試題分析:切線在x軸、y軸上的截距相等,可設(shè)切線方程為或x+y=a,又根據(jù)切線的性質(zhì)知圓心(-1,2)到切線的距離等于半徑
,由點(diǎn)到直線的距離公式可得
與
的值.本題中容易遺漏切線為
的形式,此時在兩坐標(biāo)軸的距離也相等為
.
解: 由方程x2+y2+2x-4y+3=0知圓心為(-1,2),半徑為,
當(dāng)切線過原點(diǎn)時,設(shè)切線方程為,則
,
∴,即切線方程為
.
當(dāng)切線不過原點(diǎn)時,設(shè)切線方程為x+y=a,
則.
∴a=-1或a=3,即切線方程為x+y+1=0或x+y-3=0.
∴切線方程為或x+y+1=0或x+y-3=0.
考點(diǎn):1.圓的切線的性質(zhì);2.點(diǎn)到直線的距離公式;3.直線的截距式方程.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖所示,⊙O內(nèi)切△ABC的邊于D、E、F,AB=AC,連接AD交⊙O于點(diǎn)H,直線HF交BC的延長線于點(diǎn)G.求證:
(1)圓心O在直線AD上;
(2)點(diǎn)C是線段GD的中點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知圓C經(jīng)過點(diǎn)A(-2,0),B(0,2),且圓心C在直線y=x上,又直線l:y=kx+1與圓C相交于P、Q兩點(diǎn).
(1)求圓C的方程;
(2)過點(diǎn)(0,1)作直線l1與l垂直,且直線l1與圓C交于M、N兩點(diǎn),求四邊形PMQN面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知動圓(
)
(1)當(dāng)時,求經(jīng)過原點(diǎn)且與圓
相切的直線
的方程;
(2)若圓恰在圓
的內(nèi)部,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知點(diǎn),動點(diǎn)P 滿足:|PA|=2|PB|.
(1)若點(diǎn)P的軌跡為曲線,求此曲線的方程;
(2)若點(diǎn)Q在直線l1: x+y+3=0上,直線l2經(jīng)過點(diǎn)Q且與曲線只有一個公共點(diǎn)M,求|QM|的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知曲線的方程為:
(
,
為常數(shù)).
(1)判斷曲線的形狀;
(2)設(shè)曲線分別與
軸、
軸交于點(diǎn)
、
(
、
不同于原點(diǎn)
),試判斷
的面積
是否為定值?并證明你的判斷;
(3)設(shè)直線與曲線
交于不同的兩點(diǎn)
、
,且
,求曲線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知圓:
,過定點(diǎn)
作斜率為1的直線交圓
于
、
兩點(diǎn),
為線段
的中點(diǎn).
(1)求的值;
(2)設(shè)為圓
上異于
、
的一點(diǎn),求△
面積的最大值;
(3)從圓外一點(diǎn)向圓
引一條切線,切點(diǎn)為
,且有
, 求
的最小值,并求
取最小值時點(diǎn)
的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
已知點(diǎn)P(2,1)在圓C:上,點(diǎn)P關(guān)于直線
的對稱點(diǎn)也在圓C上,則圓C的半徑為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com