日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知數(shù)列{an}中,a1=2,a2=3,其前n項(xiàng)和Sn滿足Sn+1+Sn-1=2Sn+1(n≥2,n∈N*).
          (Ⅰ)求證:數(shù)列{an}為等差數(shù)列,并求{an}的通項(xiàng)公式;
          (Ⅱ)設(shè)bn=2nan,求數(shù)列{bn}的前n項(xiàng)和Tn
          分析:(Ⅰ)把Sn+1+Sn-1=2Sn+1整理為:(sn+1-sn)-(sn-sn-1)=1,即an+1-an=1  即可說明數(shù)列{an}為等差數(shù)列;再結(jié)合其首項(xiàng)和公差即可求出{an}的通項(xiàng)公式;
          (Ⅱ)因?yàn)閿?shù)列{bn}的通項(xiàng)公式為一等差數(shù)列乘一等比數(shù)列組合而成的新數(shù)列,故直接利用錯位相減法求和即可.
          解答:解:(Ⅰ)證明:由已知:(sn+1-sn)-(sn-sn-1)=1  (n≥2,n∈N*),
          即an+1-an=1  (n≥2,n∈N*)且a2-a1=1.
          ∴數(shù)列{an}是以a1=2為首項(xiàng),公差為1的等差數(shù)列.
          ∴an=n+1.(6分)
          (Ⅱ)由(Ⅰ)知bn=(n+1)•2n,它的前n項(xiàng)和為Tn
          Tn=2•21+3•22+4•23++n•2n-1+(n+1)•2n(1)
          2Tn=2•22+3•23+4•24++n•2n+(n+1)•2n+1(2)
          (1)-(2):
          -Tn=2•21+22+23+24++2n-(n+1)•2n+1
          =4+
          22(1-2n-1)
          1-2
            -(n+1)•2n+1

          =-n•2n+1
          ∴Tn=n•2n+1(13分)
          點(diǎn)評:本題主要考查等差關(guān)系的確定以及利用錯位相減法求數(shù)列的和.錯位相減法適用于一等差數(shù)列乘一等比數(shù)列組合而成的新數(shù)列.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知數(shù)列{an}中,a1=1,an+1-an=
          1
          3n+1
          (n∈N*)
          ,則
          lim
          n→∞
          an
          =
           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知數(shù)列{an}中,a1=1,an+1=
          an
          1+2an
          ,則{an}的通項(xiàng)公式an=
          1
          2n-1
          1
          2n-1

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知數(shù)列{an}中,a1=1,a1+2a2+3a3+…+nan=
          n+1
          2
          an+1(n∈N*)

          (1)求數(shù)列{an}的通項(xiàng)公式;
          (2)求數(shù)列{
          2n
          an
          }
          的前n項(xiàng)和Tn

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知數(shù)列{an}中,a1=
          1
          2
          ,Sn
          為數(shù)列的前n項(xiàng)和,且Sn
          1
          an
          的一個等比中項(xiàng)為n(n∈N*
          ),則
          lim
          n→∞
          Sn
          =
          1
          1

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知數(shù)列{an}中,a1=1,2nan+1=(n+1)an,則數(shù)列{an}的通項(xiàng)公式為( 。
          A、
          n
          2n
          B、
          n
          2n-1
          C、
          n
          2n-1
          D、
          n+1
          2n

          查看答案和解析>>

          同步練習(xí)冊答案