日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 設(shè)橢圓C:+=1(a>b>0)過(guò)點(diǎn)M(1,1),離心率e=,O為坐標(biāo)原點(diǎn).
          (I)求橢圓C的方程.
          (Ⅱ)若直線l是圓O:x2+y2=1的任意一條切線,且直線l與橢圓C相交于A,B兩點(diǎn),求證:為定值.
          【答案】分析:(I)利用離心率的計(jì)算公式、a、b、c的關(guān)系及點(diǎn)滿足橢圓的方程可得,解出即可;
          (II)分切線的斜率存在與不存在討論,把直線的方程與橢圓的方程聯(lián)立得到根與系數(shù)的關(guān)系及利用數(shù)量積即可得出.
          解答:解:(Ⅰ)由題意可得,解得,
          ∴橢圓C的方程為
          (Ⅱ)①當(dāng)圓O的切線l的斜率存在時(shí),設(shè)直線l的方程為y=kx+m,
          則圓心O到直線l的距離,
          ∴1+k2=m2
          將直線l的方程和橢圓C的方程聯(lián)立,得到(1+3k2)x2+6kmx+3m2-4=0.
          設(shè)直線l與橢圓C相交于A(x1,y1),B(x2,y2)兩點(diǎn),
          ,
          =x1x2+(kx1+m)(kx2+m)
          =
          =
          =
          =0,
          ②當(dāng)圓的切線l的斜率不存在時(shí),驗(yàn)證得
          綜合上述可得,為定值0.
          點(diǎn)評(píng):本題綜合考查了橢圓的定義、標(biāo)準(zhǔn)方程及其性質(zhì)、直線與橢圓的相交問(wèn)題轉(zhuǎn)化為方程聯(lián)立及根與系數(shù)的關(guān)系、數(shù)量積等基礎(chǔ)知識(shí)與基本技能,考查了分類討論的思想方法推理能力和計(jì)算能力.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          設(shè)橢圓C:數(shù)學(xué)公式+數(shù)學(xué)公式=1(a>b>0)的左焦點(diǎn)為F1=(-數(shù)學(xué)公式,0),橢圓過(guò)點(diǎn)P(-數(shù)學(xué)公式,數(shù)學(xué)公式
          (1)求橢圓C的方程;
          (2)已知點(diǎn)D(l,0),直線l:y=kx+m與橢圓C交于A、B兩點(diǎn),以DA和DB為鄰邊的四邊形是菱形,求k的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

          設(shè)橢圓C:數(shù)學(xué)公式=1(a>b>0)的左、右焦點(diǎn)分別為F1、F2,離心率為數(shù)學(xué)公式,左焦點(diǎn)F1到直線l:數(shù)學(xué)公式的距離等于長(zhǎng)半軸長(zhǎng).
          (I)求橢圓C的方程;
          (II)過(guò)右焦點(diǎn)F2作斜率為k的直線l與橢圓C交于M、N兩點(diǎn),線段MN的中垂線與x軸相交于點(diǎn)P(m,O),求實(shí)數(shù)m的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年江蘇省宿遷市泗陽(yáng)中學(xué)、盱眙中學(xué)高三聯(lián)考數(shù)學(xué)試卷(解析版) 題型:解答題

          設(shè)橢圓C:+=1(a>b>0)的左焦點(diǎn)為F,上頂點(diǎn)為A,過(guò)點(diǎn)A與AF垂直的直線分別交橢圓C與x軸正半軸于點(diǎn)P、Q,且=
          (1)求橢圓C的離心率;
          (2)若過(guò)A、Q、F三點(diǎn)的圓恰好與直線l:x+y+3=0相切,求橢圓C的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:2012年四川省高考數(shù)學(xué)壓軸卷(文科)(解析版) 題型:解答題

          設(shè)橢圓C:+=1(a>b>0)的左焦點(diǎn)為F1=(-,0),橢圓過(guò)點(diǎn)P(-,
          (1)求橢圓C的方程;
          (2)已知點(diǎn)D(l,0),直線l:y=kx+m與橢圓C交于A、B兩點(diǎn),以DA和DB為鄰邊的四邊形是菱形,求k的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案