日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知數(shù)列{an},a1=1,an+1=an+2n,計算數(shù)列{an}前10項的和;現(xiàn)已給出了該問題算法的程序框圖(如圖所示)

          (Ⅰ)請在圖中執(zhí)行框中的(A)處填上合適的語句,使之能完成該題算法功能;

          (Ⅱ)根據(jù)程序框圖寫出偽代碼.

          (Ⅲ)按照流程圖,執(zhí)行完程序框圖后輸出結(jié)果,s,p,i的值各為多少?

          答案:
          解析:

            解:(Ⅰ)

            (Ⅱ)

            While i≤10

            s←s+p

            p←p+2i

            i←i+1

            End while

            Print s,p,i

            (Ⅲ)s=751,p=111,i=11


          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知數(shù)列{an}滿足
          a1-1
          2
          +
          a2-1
          22
          +…+
          an-1
          2n
          =n2+n(n∈N*)

          (I)求數(shù)列{an}的通項公式;
          (II)求數(shù)列{an}的前n項和Sn

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知數(shù)列{an}滿足a 1=
          2
          5
          ,且對任意n∈N*,都有
          an
          an+1
          =
          4an+2
          an+1+2

          (1)求證:數(shù)列{
          1
          an
          }為等差數(shù)列,并求{an}的通項公式;
          (2)令bn=an•an+1,Tn=b1+b2+b3+…+bn,求證:Tn
          4
          15

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知數(shù)列{an}滿足a 1=
          2
          5
          ,且對任意n∈N+,都有
          an
          an+1
          =
          4an+2
          an+1+2

          (1)求{an}的通項公式;
          (2)令bn=an•an+1,Tn=b1+b2+b3+…+bn,求證:Tn
          4
          15

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知數(shù)列{an}滿足a n+an+1=
          1
          2
          (n∈N+)
          ,a 1=-
          1
          2
          ,Sn是數(shù)列{an}的前n項和,則S2013=
           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知數(shù)列{an}:,,,…,,…,其中a是大于零的常數(shù),記{an}的前n項和為Sn,計算S1,S2,S3的值,由此推出計算Sn的公式,并用數(shù)學(xué)歸納法加以證明.

          查看答案和解析>>

          同步練習(xí)冊答案