日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù)f (x)=ln(2+3x)-x2 ..

          (1)求f (x)在[0, 1]上的極值;

          (2)若對任意x∈[,],不等式|a-lnx|-ln[ f ’(x)+3x]>0成立,求實數(shù)a的取值范圍;

          (3)若關(guān)于x的方程f (x)= -2x+b在[0, 1]上恰有兩個不同的實根,求實數(shù)b的取值范圍.

          (1)函數(shù)上有極大值 

                 (2)求實數(shù)a的取值范圍  

          (3)實數(shù)b的取值范圍


          解析:

          (1),

          (舍去)

          單調(diào)遞增;

          當(dāng)單調(diào)遞減.

          ∴函數(shù)上有極大值            

          (2)由

          設(shè),

          ,

          依題意知上恒成立,

          ,

          ,

          上單增,要使不等式①成立,

          當(dāng)且僅當(dāng)          

             (3)由

          ,

          當(dāng)上遞增;

          當(dāng)上遞減

          ,

          恰有兩個不同實根等價于

          所以,.                

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=
          3x+5,(x≤0)
          x+5,(0<x≤1)
          -2x+8,(x>1)
          ,
          求(1)f(
          1
          π
          ),f[f(-1)]
          的值;
          (2)若f(a)>2,則a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          精英家教網(wǎng)已知函數(shù)f(x)=
          (1-3a)x+10ax≤7
          ax-7x>7.
          是定義域上的遞減函數(shù),則實數(shù)a的取值范圍是(  )
          A、(
          1
          3
          ,1)
          B、(
          1
          3
          1
          2
          ]
          C、(
          1
          3
          6
          11
          ]
          D、[
          6
          11
          ,1

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=
          |x-1|-a
          1-x2
          是奇函數(shù).則實數(shù)a的值為
           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=
          2x-2-x2x+2-x

          (1)求f(x)的定義域與值域;
          (2)判斷f(x)的奇偶性并證明;
          (3)研究f(x)的單調(diào)性.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=
          x-1x+a
          +ln(x+1)
          ,其中實數(shù)a≠1.
          (1)若a=2,求曲線y=f(x)在點(0,f(0))處的切線方程;
          (2)若f(x)在x=1處取得極值,試討論f(x)的單調(diào)性.

          查看答案和解析>>

          同步練習(xí)冊答案