日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (本小題共14分)
          設(shè)函數(shù)).
          (Ⅰ)當(dāng)時,求的極值;
          (Ⅱ)當(dāng)時,求的單調(diào)區(qū)間.
          (Ⅰ)當(dāng)時, 取得極大值為.
          (Ⅱ)當(dāng)時,的增區(qū)間為,減區(qū)間為;
          當(dāng)時,的增區(qū)間為,減區(qū)間為,;
          當(dāng)時,的減區(qū)間為,無增區(qū)間;
          當(dāng)時,的增區(qū)間為,減區(qū)間為,.
          (Ⅰ)依題意,知的定義域?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823141009226317.gif" style="vertical-align:middle;" />.
          當(dāng)時,,
          ,解得.
          當(dāng)變化時,的變化情況如下表:






          0


          單調(diào)遞增
          極大值
          單調(diào)遞減
           
          由上表知:當(dāng)時,;當(dāng)時,.
          故當(dāng)時, 取得極大值為.-------------------5分
          (Ⅱ)
          ,令,解得:;令,解得:.
          ,①當(dāng)時,
          ,解得:
          ,解得:.
          ②當(dāng)時,,
          ③當(dāng)時,
          ,解得:;
          ,解得:.
          綜上,當(dāng)時,的增區(qū)間為,減區(qū)間為
          當(dāng)時,的增區(qū)間為,減區(qū)間為,
          當(dāng)時,的減區(qū)間為,無增區(qū)間;
          當(dāng)時,的增區(qū)間為,減區(qū)間為,.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          (本小題共14分)
          已知,動點(diǎn)到定點(diǎn)的距離比到定直線的距離小.
          (I)求動點(diǎn)的軌跡的方程;
          (Ⅱ)設(shè)是軌跡上異于原點(diǎn)的兩個不同點(diǎn),,求面積的最小值;
          (Ⅲ)在軌跡上是否存在兩點(diǎn)關(guān)于直線對稱?若存在,求出直線 的方程,若不存在,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

          的兩個頂點(diǎn)坐標(biāo)A、B的周長為18,則頂點(diǎn)C的軌跡方程是                                                   (   )
          A.B.
          C.  D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

          過橢圓的左焦點(diǎn)F的直線交橢圓于點(diǎn)A、B,交其左準(zhǔn)線于點(diǎn)C,
          ,則此直線的斜率為                     
          A、   B、   C、     D、 

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          (本題滿分18分,其中第1小題6分,第2小題4分,第3小題8分)
          現(xiàn)有變換公式可把平面直角坐標(biāo)系上的一點(diǎn)變換到這一平面上的一點(diǎn).
          (1)若橢圓的中心為坐標(biāo)原點(diǎn),焦點(diǎn)在軸上,且焦距為,長軸頂點(diǎn)和短軸頂點(diǎn)間的距離為2. 求該橢圓的標(biāo)準(zhǔn)方程,并求出其兩個焦點(diǎn)經(jīng)變換公式變換后得到的點(diǎn)的坐標(biāo);
          (2) 若曲線上一點(diǎn)經(jīng)變換公式變換后得到的點(diǎn)與點(diǎn)重合,則稱點(diǎn)是曲線在變換下的不動點(diǎn). 求(1)中的橢圓在變換下的所有不動點(diǎn)的坐標(biāo);
          (3) 在(2)的基礎(chǔ)上,試探究:中心為坐標(biāo)原點(diǎn)、對稱軸為坐標(biāo)軸的橢圓和雙曲線在變換下的不動點(diǎn)的存在情況和個數(shù).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

          設(shè)分別為具有公共焦點(diǎn)的橢圓和雙曲線的離心率,P為兩曲線的一個公共點(diǎn),且滿足的值為      (   )
          A.2B.C.4D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

          是雙曲線的右支上一動點(diǎn),F是雙曲線的右焦點(diǎn),已知,則的最小值是                                     (   )
          A.B.C.D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

          橢圓(1-m)x2my2=1的長軸長是                      .

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

          曲線處的切線的斜率是(   )
          A.B.C.D.

          查看答案和解析>>

          同步練習(xí)冊答案