日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù)的圖象關(guān)于點(b,1)對稱.
          (I)求a的值;
          (II)求函數(shù)f(x)的單調(diào)區(qū)間;
          (II)設(shè)函數(shù)g(x)=x3-3c2x-2c(c≤-1).若對任意x1∈[2,4],總存在x2∈[-1,0],使得f(x1)=g(x2)成立,求c的取值范圍.
          【答案】分析:(I)=x-1++a+2,由y=x+(a≠2)的圖象有一個唯一的對稱中心(0,0),f(x)的對稱中心是(b,1),能求出a.
          (II)由a=-1,b=1,知f(x)=.=,由此能求出函數(shù)f(x)的單調(diào)區(qū)間.
          (Ⅲ)由g(x)=x3-3c2x-2c(c≤-1),得g′(x)=3x2-3c2=3(x2-c2),由對任意x1∈[2,4],總存在x2∈[-1,0],使得f(x1)=g(x2)成立推導出-2c,其中c≤-1.由此能求出c的取值范圍.
          解答:解:(I)∵
          =
          =x-1++a+2,
          ∵y=x+,(a≠2)的圖象有一個唯一的對稱中心(0,0),
          ∴f(x)有唯一一個對稱中心(1,a+2),
          ∵f(x)的對稱中心是(b,1),∴a=-1,b=1.
          故a=-1.
          (II)∵a=-1,b=1,∴f(x)=
          =,
          列表討論:
           x (-∞,0) 0(0,1) 1 (1,2) 2 (2,+∞)
           f′(x)+ 0- 不存在-+
           f(x)-1 不存在 3
          ∴函數(shù)f(x)的增區(qū)間為(-∞,0)和(2,+∞),減區(qū)間為(0,1)和(1,2).
          (Ⅲ)由g(x)=x3-3c2x-2c(c≤-1),得
          g′(x)=3x2-3c2=3(x2-c2),
          當x2∈[-1,0]時,g′(x2)≤0,
          ∴g(x2)∈[g(0),g(-1)].即g(x2)∈(-2c,-2c-1),
          ∵f(x)在[2,4]上是增區(qū)數(shù),f(2)=3,f(4)=,

          ∵任意x1∈[2,4],總存在x2∈[-1,0],使得f(x1)=g(x2)成立,
          ∴-2c,其中c≤-1.
          ,解得
          故c的取值范圍是[-,].
          點評:本題考查函數(shù)的對稱中心的應(yīng)用,考查函數(shù)的單調(diào)區(qū)間的求法,考查滿足條件的實數(shù)的取值范圍的求法,解題時要認真審題,注意導數(shù)性質(zhì)、等價轉(zhuǎn)化思想、分類討論思想的合理運用.
          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學 來源:2012-2013學年安徽省安慶一中高一(上)期中數(shù)學試卷(解析版) 題型:解答題

          若函數(shù)f(x)對定義域中任意x均滿足f(x)+f(2a-x)=2b,則稱函數(shù)y=f(x)的圖象關(guān)于點(a,b)對稱.
          (1)已知函數(shù)的圖象關(guān)于點(0,1)對稱,求實數(shù)m的值;
          (2)已知函數(shù)g(x)在R上的圖象關(guān)于點(0,1)對稱,且當x∈(0,+∞)時,g(x)=x2-2x,求函數(shù)g(x)在R上的解析式.

          查看答案和解析>>

          科目:高中數(shù)學 來源:2012-2013學年北京市十一學校高三(上)暑期檢測數(shù)學試卷1(文科)(解析版) 題型:解答題

          若函數(shù)f(x)對定義域中任意x均滿足f(x)+f(2a-x)=2b,則稱函數(shù)y=f(x)的圖象關(guān)于點(a,b)對稱.
          (Ⅰ)已知函數(shù)的圖象關(guān)于點(0,1)對稱,求實數(shù)m的值;
          (Ⅱ)已知函數(shù)g(x)在(-∞,0)∪(0,+∞)上的圖象關(guān)于點(0,1)對稱,且當x∈(0,+∞)時,g(x)=x2+ax+1,求函數(shù)g(x)在(-∞,0)上的解析式;
          (Ⅲ)在(Ⅰ)、(Ⅱ)的條件下,當t>0時,若對任意實數(shù)x∈(-∞,0),恒有g(shù)(x)<f(t)成立,求實數(shù)a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源:2013屆山東冠縣武訓高中高二下第二次模塊考試理科數(shù)學試卷(解析版) 題型:選擇題

          已知函數(shù)的圖象關(guān)于點對稱,且當時,成立(其中的導函數(shù)),若,

          ,則的大小關(guān)系是(    )

          A.      B.       C.          D.

           

          查看答案和解析>>

          科目:高中數(shù)學 來源:2011-2012學年上海華師大一附中高三第二學期開學檢測試題數(shù)學 題型:選擇題

          .已知函數(shù)的圖象關(guān)于點對稱,且函數(shù)為奇函數(shù),則下列結(jié)論:(1)點的坐標為;(2)當時,恒成立;(3)關(guān)于的方程有且只有兩個實根。其中正確結(jié)論的題號為(   )

          A、(1)(2)       B、(2)(3)        C、(1)(3)     D、(1)(2)(3)

           

           

          查看答案和解析>>

          科目:高中數(shù)學 來源:2013屆山東省濰坊市三縣高一下學期期末聯(lián)合考試(數(shù)學) 題型:選擇題

          已知函數(shù)的圖象關(guān)于點中心對稱,則的最小值為  

          A.            B.            C.           D.    

           

          查看答案和解析>>

          同步練習冊答案