日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,在矩形ABCD中,AB=2,AD=1,E為CD的中點(diǎn),將△ADE沿AE折起,使平面ADE⊥平面ABCE,得到幾何體D-ABCE.
          (1)求證:BE⊥平面ADE;
          (2)求BD和平面CDE所成的角的正弦值.
          分析:(1)由題意可得BE⊥AE,又平面ADE⊥平面ABCE,平面ADE∩平面ABCE=AE,利用面面垂直的性質(zhì)定理即可證明BE⊥平面ADE.
          (2)在平面CDE內(nèi),過(guò)C作CE的垂線,與過(guò)D作CE的平行線交于F,由BC⊥EC,CF∩BC=C,可得EC⊥平面BCF.再過(guò)B作BG⊥CF于G,可得EC⊥BG.連接DG,可得BG⊥平面CDE;故∠BDG為BD和平面CDE所成的角.利用直角三角形的邊角關(guān)系求出BG,BD即可.
          解答:證明:(1)∵在矩形ABCD中,AB=2,AD=1,E為CD的中點(diǎn),∴∠AED=45°,
          同理∠CEB=45°,于是∠AEB=90°,∴BE⊥AE.
          ∵平面ADE⊥平面ABCE,平面ADE∩平面ABCE=AE,
          ∴BE⊥平面ADE.
          (2)在平面CDE內(nèi),過(guò)C作CE的垂線,與過(guò)D作CE的平行線交于F,
          ∵BC⊥EC,CF∩BC=C,∴EC⊥平面BCF.
          再過(guò)B作BG⊥CF于G,可得EC⊥BG.
          連接DG,可得BG⊥平面CDE; 
          ∴∠BDG為BD和平面CDE所成的角.
          過(guò)D作DH⊥AE交AE于點(diǎn)H,連接CH,BH.
          在△DHC中,△DHB中,可得DC=BD=
          3
          ,又DE=EC=1,因此∠DCE=∠CDF=30°,
          ∵CF⊥DF,∴CF=
          3
          2

          由題意得BC=1,F(xiàn)B=
          3
          2
          ,∴BG=
          6
          3
          ,
          因此sin∠BDG=
          BG
          BD
          =
          2
          3
          ,
          ∴BD和平面CDE所成的角的正弦值為
          2
          3
          點(diǎn)評(píng):熟練掌握線面、面面垂直的判定與性質(zhì)定理、線面角的定義、直角三角形的邊角關(guān)系是解題的關(guān)鍵.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          精英家教網(wǎng)如圖,在矩形ABCD中,AB=2BC,P,Q分別為線段AB,CD的中點(diǎn),EP⊥平面ABCD.
          (1) 求證:AQ∥平面CEP;
          (2) 求證:平面AEQ⊥平面DEP.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          精英家教網(wǎng)如圖,在矩形ABCD中,已知AB=2AD=4,E為AB的中點(diǎn),現(xiàn)將△AED沿DE折起,使點(diǎn)A到點(diǎn)P處,滿(mǎn)足PB=PC,設(shè)M、H分別為PC、DE的中點(diǎn).
          (1)求證:BM∥平面PDE;
          (2)線段BC上是否存在一點(diǎn)N,使BC⊥平面PHN?試證明你的結(jié)論;
          (3)求△PBC的面積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          如圖,在矩形ABCD中,AB=3
          3
          ,BC=3,沿對(duì)角線BD將BCD折起,使點(diǎn)C移到點(diǎn)C′,且C′在平面ABD的射影O恰好在AB上
          (1)求證:BC′⊥面ADC′;
          (2)求二面角A-BC′-D的正弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          如圖,在矩形ABCD中,已知AB=3,AD=1,E、F分別是AB的兩個(gè)三等分點(diǎn),AC,DF相交于點(diǎn)G,建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系:
          (1)若動(dòng)點(diǎn)M到D點(diǎn)距離等于它到C點(diǎn)距離的兩倍,求動(dòng)點(diǎn)M的軌跡圍成區(qū)域的面積;
          (2)證明:E G⊥D F.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          如圖,在矩形ABCD中,AB=
          12
          BC,E為AD的中點(diǎn),將△ABE沿BE折起,使平面ABE⊥平面BCDE.
          (1)求證:CE⊥AB;
          (2)在線段BC上找一點(diǎn)F,使DF∥平面ABE.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案