(本小題滿分14分)設,
.
(1)當時,求曲線
在
處的切線方程;
(2)如果存在,使得
成立,求滿足上述條件的最大整數(shù)
;
(3)如果對任意的,都有
成立,求實數(shù)
的取值范圍.
21. (本題滿分14分)
(1)當時,
,
,
,
,
所以曲線在
處的切線方程為
;
4分
(2)存在,使得
成立
等價于:,
考察,
,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
遞減 |
極(最)小值 |
遞增 |
|
由上表可知:,
,
所以滿足條件的最大整數(shù);
9分
(3)當時,
恒成立
等價于恒成立,
記,
,
。
記,
,由于
,
, 所以
在
上遞減,
當時,
,
時,
,
即函數(shù)在區(qū)間
上遞增,在區(qū)間
上遞減,
所以,所以
。
14分
(3)另解:對任意的,都有
成立
等價于:在區(qū)間上,函數(shù)
的最小值不小于
的最大值,
由(2)知,在區(qū)間上,
的最大值為
。
,下證當
時,在區(qū)間
上,函數(shù)
恒成立。
當且
時,
,
記,
,
當,
;當
,
,
所以函數(shù)在區(qū)間
上遞減,在區(qū)間
上遞增,
,即
,
所以當且
時,
成立,
即對任意,都有
。
14分
【解析】略
科目:高中數(shù)學 來源: 題型:
3 |
π |
4 |
π |
4 |
π |
2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
(本小題滿分14分)設橢圓C1的方程為(a>b>0),曲線C2的方程為y=
,且曲線C1與C2在第一象限內只有一個公共點P。(1)試用a表示點P的坐標;(2)設A、B是橢圓C1的兩個焦點,當a變化時,求△ABP的面積函數(shù)S(a)的值域;(3)記min{y1,y2,……,yn}為y1,y2,……,yn中最小的一個。設g(a)是以橢圓C1的半焦距為邊長的正方形的面積,試求函數(shù)f(a)=min{g(a), S(a)}的表達式。
查看答案和解析>>
科目:高中數(shù)學 來源:2011年江西省撫州市教研室高二上學期期末數(shù)學理卷(A) 題型:解答題
(本小題滿分14分)
已知=2,點(
)在函數(shù)
的圖像上,其中
=
.
(1)證明:數(shù)列}是等比數(shù)列;
(2)設,求
及數(shù)列{
}的通項公式;
(3)記,求數(shù)列{
}的前n項和
,并證明
.
查看答案和解析>>
科目:高中數(shù)學 來源:2015屆山東省威海市高一上學期期末考試數(shù)學試卷(解析版) 題型:解答題
(本小題滿分14分)
某網店對一應季商品過去20天的銷售價格及銷售量進行了監(jiān)測統(tǒng)計發(fā)現(xiàn),第天(
)的銷售價格(單位:元)為
,第
天的銷售量為
,已知該商品成本為每件25元.
(Ⅰ)寫出銷售額關于第
天的函數(shù)關系式;
(Ⅱ)求該商品第7天的利潤;
(Ⅲ)該商品第幾天的利潤最大?并求出最大利潤.
查看答案和解析>>
科目:高中數(shù)學 來源:2011-2012學年廣東省高三下學期第一次月考文科數(shù)學試卷(解析版) 題型:解答題
(本小題滿分14分)已知的圖像在點
處的切線與直線
平行.
⑴ 求,
滿足的關系式;
⑵ 若上恒成立,求
的取值范圍;
⑶ 證明:(
)
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com