日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖一,在△ABC中,ABAC、ADBCD是垂足,則AB2=BD·BC(射影定理).類似有命題:三棱錐ABCD(圖二)中,AD⊥平面ABC,AO⊥平面BCD,O為垂足,且O在△BCD內(nèi),則,

          上述命題是

          [  ]

          A.真命題

          B.假命題

          C.增加“ABAC”的條件才是真命題

          D.增加“三棱錐ABCD是正三棱錐”的條件才是真命題

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          一副三角板(如圖),其中△ABC中,AB=AC,∠BAC=90°,△DMN 中,∠MND=90°,∠D=60°,現(xiàn)將兩相等長的邊BC、MN重合,并翻折構(gòu)成四面體ABCD.CD=a
          (1)當(dāng)平面ABC⊥平面BCD(圖(1))時,求直線AD與平面BCD所成角的正弦值
          (2)當(dāng)將平面ABC翻折到使A到B、C、D三點的距離相等時(圖(2)),
          ①求證:A在平面BCD內(nèi)的射影是BD的中點;
          ②求二面角A-CD-B的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (本題為選做題,請在下列三題中任選一題作答)
          A(《幾何證明選講》選做題).如圖:直角三角形ABC中,∠B=90°,AB=4,以BC為直徑的圓交邊AC于點D,AD=2,則∠C的大小為
          30°
          30°

          B(《坐標(biāo)系與參數(shù)方程選講》選做題).已知直線的極坐標(biāo)方程為ρsin(θ+
          π
          4
          )=
          2
          2
          ,則點A(2,
          4
          )到這條直線的距離為
          2
          2
          2
          2

          C(不等式選講)不等式|x-1|+|x|<3的解集是
          (-1,2)
          (-1,2)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•咸陽三模)(考生注意:請在下列三道試題中任選一題作答,如果多做,則按所做的第一題評閱記分)
          A.(不等式選做題)若不等式|2a-1|≤ |x+
          1
          x
          |
          對一切非零實數(shù)x恒成立,則實數(shù)a的取值范圍為
          [-
          1
          2
          ,
          3
          2
          ]
          [-
          1
          2
          3
          2
          ]

          B.(幾何證明選做題)如圖,直角三角形ABC中,∠B=90°,AB=4,以BC為直徑的圓交AC邊于點D,AD=2,則∠C的大小為
          30°
          30°

          C.(極坐標(biāo)與參數(shù)方程選做題)若直線l的極坐標(biāo)方程為ρcos(θ-
          π
          4
          )=3
          2
          ,圓C:
          x=cosθ
          y=sinθ
          (θ為參數(shù))上的點到直線l的距離為d,則d的最大值為
          3
          2
          +1
          3
          2
          +1

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:中山市東升高中2008屆高三數(shù)學(xué)基礎(chǔ)達標(biāo)訓(xùn)練17 題型:013

          如圖一,在△ABC中,ABAC、ADBCD是垂足,則AB2=BD·BC(射影定理).類似有命題:三棱錐ABCD(圖二)中,AD⊥平面ABC,AO⊥平面BCD,O為垂足,且O在△BCD內(nèi),則S2△ABC=S2△BCO·S2△BCD.上述命題是

          [  ]

          A.真命題

          B.假命題

          C.增加“ABAC”的條件才是真命題

          D.增加“三棱錐ABCD是正三棱錐”的條件才是真命題

          查看答案和解析>>

          同步練習(xí)冊答案