日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,在直三棱柱ABC-A1B1C1中,底面為等腰直角三角形,ACBC,點DAB的中點,側(cè)面BB1C1C是正方形.

          (1) 求證ACB1C;(2)求二面角B-CD-B1平面角的正切值.

           

          【答案】

          (1)要證明線線垂直,要通過線面垂直的性質(zhì)定理來求解,主要是得到AC⊥平面BCC1B1

          (2)

          【解析】

          試題分析:證明:(1)在直三棱柱ABC-A1B1C1中,CC1⊥平面ABC

          CC1AC,

          ACBC,BCCC1=C

          所以,AC⊥平面BCC1B1

          所以,ACB1C.                          3分

          (2)∵△ABC是等腰直角三角形,DAB中點,

          CDAB

          ∵平面ABC⊥平面AA1B1B,平面ABC∩平面AA1B1B=AB,

          CD ⊥平面AA1B1B,

          B1D平面AA1B1B,BD平面AA1B1B

          CDB1D,CDBD,

          ∴∠B1DB是二面角B-CD-B1平面角,         6分

          不妨設(shè)正方形BB1C1C的棱長為2a,則:

          RTB1DB中,BD=a,BB1=2a,∠B1BD=90º

          ∴tan∠B1DB==.

          ∴所求二面角B-CD-B1平面角的正切值為.          8分

          考點:二面角,線線垂直

          點評:考查了線線垂直和二面角的平面角的求解,屬于基礎(chǔ)題。

           

          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學 來源: 題型:

          如圖,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一P是AD的延長線與A1C1的延長線的交點,且PB1∥平面BDA.

          (I)求證:CD=C1D:

          (II)求二面角A-A1D-B的平面角的余弦值; 

          (Ⅲ)求點C到平面B1DP的距離.

          查看答案和解析>>

          科目:高中數(shù)學 來源:2011年四川省招生統(tǒng)一考試理科數(shù)學 題型:解答題

           

           (本小題共l2分)

              如圖,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一[來源:]

          P是AD的延長線與A1C1的延長線的交點,且PB1∥平面BDA.

          (I)求證:CD=C1D:

          (II)求二面角A-A1D-B的平面角的余弦值;   

          (Ⅲ)求點C到平面B1DP的距離.

           

          查看答案和解析>>

          科目:高中數(shù)學 來源:2011年高考試題數(shù)學理(四川卷)解析版 題型:解答題

           (本小題共l2分)

              如圖,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一

          P是AD的延長線與A1C1的延長線的交點,且PB1∥平面BDA.

          (I)求證:CD=C1D:

          (II)求二面角A-A1D-B的平面角的余弦值;   

          (Ⅲ)求點C到平面B1DP的距離.

           

           

           

          查看答案和解析>>

          科目:高中數(shù)學 來源:四川省高考真題 題型:解答題

          如圖,在直三棱柱AB-A1B1C1中,∠ BAC=90°,AB=AC=AA1=1,D是棱CC1上一點,P是AD的延長線與A1C1的延長線的交點,且PB1∥平面BDA。
          (I)求證:CD=C1D;
          (II)求二面角A-A1D-B的平面角的余弦值;
          (Ⅲ)求點C到平面B1DP的距離

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

              如圖,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一點,P是AD的延長線與A1C1的延長線的交點,且PB1∥平面BDA.

          (I)求證:CD=C1D:

          (II)求二面角A-A1D-B的平面角的余弦值;

          (Ⅲ)求點C到平面B1DP的距離.

          查看答案和解析>>

          同步練習冊答案