日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,是橢圓的左、右頂點,橢圓的離心率為,右準線的方程為.

          (1)求橢圓方程;
          (2)設是橢圓上異于的一點,直線于點,以為直徑的圓記為. ①若恰好是橢圓的上頂點,求截直線所得的弦長;
          ②設與直線交于點,試證明:直線軸的交點為定點,并求該定點的坐標.

          (1) (2) ①

          解析試題分析:(1)求橢圓方程,基本方法是待定系數(shù)法.關鍵是找全所需條件. 橢圓中三個未知數(shù)的確定只需兩個獨立條件,由可得值,(2) ①求圓被直線所截得弦長時,利用半徑、半弦長、圓心到直線距離三者成勾股列等量關系,先分別確定直線的方程與圓K的方程,②證明直線軸的交點為定點,實質為求直線軸的交點.由①知,點是關鍵點,不妨設點的坐標作為參數(shù),先表示直線的方程,與圓的方程聯(lián)立解出點P的坐標.由得直線的斜率,從而得直線的方程,再令,得點R的橫坐標為,利用點M滿足化簡得
          試題解析:(1)由,解得,故
          (2)①因為,所以直線的方程為,
          從而的方程為 6分
          又直線的方程為,故圓心到直線的距離為  8分
          從而截直線所得的弦長為   9分
          ②證:設,則直線的方程為,則點P的坐標為,
          又直線的斜率為,而,
          所以,從而直線的方程為 12分
          ,得點R的橫坐標為      13分
          又點M在橢圓上,所以,即,故,
          所以直線軸的交點為定點,且該定點的坐標為      15分
          考點:橢圓方程,直線與圓錐曲線位置關系,圓的弦長

          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:解答題

          已知中心在坐標原點O的橢圓C經過點A(2,3),且點F(2,0)為其右焦點.
          (1)求橢圓C的方程;
          (2)是否存在平行于OA的直線l,使得直線l與橢圓C有公共點,且直線OAl的距離等于4?若存在,求出直線l的方程;若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:解答題

          A(x1,y1),B(x2y2)是橢圓C=1(a>b>0)上兩點,已知mn,若m·n=0且橢圓的離心率e,短軸長為2,O為坐標原點.
          (1)求橢圓的方程;
          (2)試問△AOB的面積是否為定值?如果是,請給予證明;如果不是,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:解答題

          已知橢圓C=1(ab>0)的離心率為,其左、右焦點分別是F1、F2,過點F1的直線l交橢圓CE、G兩點,且△EGF2的周長為4.
          (1)求橢圓C的方程;
          (2)若過點M(2,0)的直線與橢圓C相交于兩點AB,設P為橢圓上一點,且滿足t (O為坐標原點),當||<時,求實數(shù)t的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:解答題

          已知拋物線,點,過的直線交拋物線兩點.
          (1)若,拋物線的焦點與中點的連線垂直于軸,求直線的方程;
          (2)設為小于零的常數(shù),點關于軸的對稱點為,求證:直線過定點

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:解答題

          已知拋物線的頂點在坐標原點,對稱軸為軸,焦點為,拋物線上一點的橫坐標為2,且.
          (1)求拋物線的方程;
          (2)過點作直線交拋物線于,兩點,求證: .

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:解答題

          拋物線在點處的切線垂直相交于點,直線與橢圓相交于,兩點.

          (1)求拋物線的焦點與橢圓的左焦點的距離;
          (2)設點到直線的距離為,試問:是否存在直線,使得,,成等比數(shù)列?若存在,求直線的方程;若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:解答題

          已知橢圓C:的左、右焦點和短軸的一個端點構成邊長為4的正三角形.
          (1)求橢圓C的方程;
          (2)過右焦點的直線與橢圓C相交于A、B兩點,若,求直線的方程.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:解答題

          如圖,在平面直角坐標系中,已知拋物線,設點,為拋物線上的動點(異于頂點),連結并延長交拋物線于點,連結、并分別延長交拋物線于點、,連結,設的斜率存在且分別為、.

          (1)若,,求;
          (2)是否存在與無關的常數(shù),是的恒成立,若存在,請將、表示出來;若不存在請說明理由.

          查看答案和解析>>

          同步練習冊答案