日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】某顏料公司生產(chǎn)A,B兩種產(chǎn)品,其中生產(chǎn)每噸A產(chǎn)品,需要甲染料1噸,乙染料4噸,丙染料2噸,生產(chǎn)每噸B產(chǎn)品,需要甲染料1噸,乙染料0噸,丙染料5噸,且該公司一條之內(nèi)甲、乙、丙三種染料的用量分別不超過50噸、160噸和200噸,如果A產(chǎn)品的利潤為300元/噸,B產(chǎn)品的利潤為200元/噸,則該顏料公司一天之內(nèi)可獲得的最大利潤為

          【答案】14000元
          【解析】解:設(shè)該公司每天生產(chǎn)A產(chǎn)品x鈍,生產(chǎn)B產(chǎn)品y鈍,則一天的利潤為z=300x+200y, 其中 ,
          作出平面區(qū)域如圖所示:

          由z=300x+200y得y=﹣ + ,
          由圖象可知直線y=﹣ + 經(jīng)過點B時,直線截距最大,此時z最大.
          解方程組 ,
          ∴z的最大值為300×40+200×10=14000.
          所以答案是:14000元.
          【考點精析】認(rèn)真審題,首先需要了解基本不等式在最值問題中的應(yīng)用(用基本不等式求最值時(積定和最小,和定積最大),要注意滿足三個條件“一正、二定、三相等”).

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知等差數(shù)列中,公差,其前項和為,且滿足:

          (Ⅰ)求數(shù)列的通項公式;

          (Ⅱ)通過公式構(gòu)造一個新的數(shù)列.若也是等差數(shù)列,求非零常數(shù)

          (Ⅲ)求的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)fx)=ax2+bx+ca≠0)滿足f0)=0,對于任意xR,都有fxx,且,令gx)=fx)﹣x1|λ0).

          1)求函數(shù)fx)的表達(dá)式;

          2)求函數(shù)gx)的單調(diào)區(qū)間;

          3)當(dāng)λ2時,判斷函數(shù)gx)在區(qū)間(0,1)上的零點個數(shù),并說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】甲乙兩名籃球運動員分別在各自不同的5場比賽所得籃板球數(shù)的莖葉圖如圖所示,已知兩名運動員在各自5場比賽所得平均籃板球數(shù)均為10.

          (1)求x,y的值;

          (2)求甲乙所得籃板球數(shù)的方差,并指出哪位運動員籃板球水平更穩(wěn)定;

          (3)教練員要對甲乙兩名運動員籃板球的整體水平進行評估.現(xiàn)在甲乙各自的5場比賽中各選一場進行評估,則兩名運動員所得籃板球之和小于18的概率.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】保險公司統(tǒng)計的資料表明:居民住宅區(qū)到最近消防站的距離x(單位:千米)和火災(zāi)所造成的損失數(shù)額y(單位:千元)有如下的統(tǒng)計資料:

          距消防站距離x(千米)

          1.8

          2.6

          3.1

          4.3

          5.5

          6.1

          火災(zāi)損失費用y(千元)

          17.8

          19.6

          27.5

          31.3

          36.0

          43.2

          如果統(tǒng)計資料表明yx有線性相關(guān)關(guān)系,試求:

          (Ⅰ)求相關(guān)系數(shù)(精確到0.01);

          (Ⅱ)求線性回歸方程(精確到0.01);

          (III)若發(fā)生火災(zāi)的某居民區(qū)與最近的消防站相距10.0千米,評估一下火災(zāi)的損失(精確到0.01).

          參考數(shù)據(jù):,

          ,,

          參考公式:相關(guān)系數(shù) ,回歸方程 中斜率和截距的最小二乘估計公式分別為:,

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在三棱柱ABC﹣A1B1C1中,AB⊥平面BB1C1C,∠BCC1= ,AB=BB1=2,BC=1,D為CC1中點.
          (1)求證:DB1⊥平面ABD;
          (2)求二面角A﹣B1D﹣A1的平面角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】公元263年左右,我國數(shù)學(xué)家劉徽發(fā)現(xiàn)當(dāng)圓內(nèi)接正多邊形的邊數(shù)無限增加時,多邊形面積可無限逼近圓的面積,并創(chuàng)立了“割圓術(shù)”.利用“割圓術(shù)”劉徽得到了圓周率精確到小數(shù)點后兩位的近似值3.14,這就是著名的“徽率”.如圖是利用劉徽的“割圓術(shù)”思想設(shè)計的一個程序框圖,則輸出n的值為( ) (參考數(shù)據(jù): ≈1.732,sin15°≈0.2588,sin7.5°≈0.1305)

          A.12
          B.24
          C.36
          D.48

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知點P為函數(shù)f(x)=lnx的圖象上任意一點,點Q為圓[x﹣(e+ )]2+y2=1任意一點,則線段PQ的長度的最小值為(
          A.
          B.
          C.
          D.e+ ﹣1

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)某大學(xué)的女生體重y(單位:kg)與身高x(單位:cm)具有線性相關(guān)關(guān)系,根據(jù)一組樣本數(shù)據(jù)(xiyi)(i=1,2,,n),用最小二乘法建立的回歸方程為=0.85x-85.71,則下列結(jié)論中不正確的是

          A. yx具有正的線性相關(guān)關(guān)系

          B. 回歸直線過樣本點的中心(

          C. 若該大學(xué)某女生身高增加1cm,則其體重約增加0.85kg

          D. 若該大學(xué)某女生身高為170cm,則可斷定其體重比為58.79kg

          查看答案和解析>>

          同步練習(xí)冊答案