日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,在梯形ABCD中,=a,=b,=c,=d,E、F分別為AB、CD的中點,則下列表達中成立的是

          [  ]

          A.=(abcd)
          B.=(abcd)
          C.=(cdab)
          D.=(abcd)
          答案:C
          解析:

          利用梯形中位線定理可得

           


          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:

          精英家教網(wǎng)如圖,在梯形ABCD中,AB∥CD,AD=DC=CB=a,.∠ABC=60°,平面ACFE⊥平面ABCD,四邊形ACFE是矩形,AE=a,點M在線段EF上.
          (1)求證:BC⊥平面ACFE;
          (2)當EM為何值時,AM∥平面BDF?證明你的結論;
          (3)求二面角B-EF-D的平面角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          精英家教網(wǎng)如圖,在梯形ABCD中,AB∥CD,AD=DC=CB=1,∠ABC=60°,四邊形ACFE為矩形,平面ACFE⊥平面ABCD,CF=1.
          (Ⅰ)求證:BC⊥平面ACFE;
          (Ⅱ)點M在線段EF上運動,設平面MAB與平面FCB所成二面角的平面角為θ(θ≤90°),試求cosθ的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          精英家教網(wǎng)如圖,在梯形ABCD中,AD∥BC,BD與AC相交于O,過O的直線分別交AB、CD于E、F,且EF∥BC,若AD=12,BC=20,則EF=
           

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          如圖,在梯形ABCD中,對角線AC和BD交于點O,E、F分別是AC和BD的中點,分別寫出
          (1)圖中與
          EF
          、
          CO
          共線的向量;
          (2)與
          EA
          相等的向量.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          如圖,在梯形△ABCD中,AB∥CD,AD=DC-=CB=1,么ABC-60.,四邊形ACFE為矩形,平面ACFE上平面ABCD,CF=1.
          (I)求證:BC⊥平面ACFE;
          (II)若M為線段EF的中點,設平面MAB與平面FCB所成二面角的平面角為θ(θ≤90°),求cosθ.

          查看答案和解析>>

          同步練習冊答案