日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 設(shè)x,y∈R,i,j為直角坐標(biāo)平面內(nèi)x,y軸正方向上的單位向量,若向量,bxi+(y-2)j,且|a|+|b|=8.

             (1)求點(diǎn)Mx,y)的軌跡C的方程;

           (2)過點(diǎn)(0,3)作直線l與曲線C交于A、B兩點(diǎn),設(shè)是否存在這樣的直線l,使得四邊形OAPB為矩形?若存在,求出直線l的方程;若不存在,試說明理由.

          見解析


          解析:

          解:(1)∵axi(y2)jbxi(y2)j,且|a|+|b|=8 ∴點(diǎn)Mx,y)到兩個(gè)定點(diǎn)F1(0,-2),F2(0,2)的距離之和為8 ∴點(diǎn)M的軌跡CF1F2為焦點(diǎn)的橢圓,其方程為

          (2)∵ly軸上的點(diǎn)(0,3),若直線ly軸,則A、B兩點(diǎn)是橢圓的頂點(diǎn),這時(shí)。

          PO重合,與四邊形OAPB是矩形矛盾,

          ∴直線l的斜率存在,設(shè)l的方程為ykx+3,Ax1,y1),B(x2,y2)

          恒成立.

          ,∴四邊形OAPB是平行四邊形

          若存在直線l使得四邊形OAPB是矩形,則OAOB,即

          ∴存在直線使得四邊形OAPB為矩形.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)x,y∈R,i,j為直角坐標(biāo)平面內(nèi)x,y軸正方向上的單位向量,若a=(x+1)i+yj,b=(x-1)i+yj,|a|+|b|=4.
          (I)求點(diǎn)M(x,y)的軌跡C的方程;
          (II)過點(diǎn)(0,m)作直線l與曲線C交于A,B兩點(diǎn),若|
          OA
          +
          OB
          |=|
          OA
          -
          OB
          |,求m的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)x,y∈R,
          i
          j
          為直角坐標(biāo)平面內(nèi)x軸y軸正方向上的單位向量,若
          a
          =x
          i
          +(y+2)
          j
          ,
          b
          =x
          i
          +(y-2)
          j
          ,且|
          a
          |+|
          b
          |=8
          (Ⅰ)求動(dòng)點(diǎn)M(x,y)的軌跡C的方程;
          (Ⅱ)設(shè)曲線C上兩點(diǎn)AB,滿足(1)直線AB過點(diǎn)(0,3),(2)若
          OP
          =
          OA
          +
          OB
          ,則OAPB為矩形,試求AB方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)x,y∈R,
          i
          ,
          j
          是直角坐標(biāo)平面內(nèi)x,y軸正方向上的單位向量,若
          a
          =x
          i
          +(y+3)
          j
          ,
          b
          =x
          i
          +(y-3)
          j
          |
          a
          |+|
          b
          |=6
          ,則點(diǎn)M(x,y)的軌跡是( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)x,y∈R,
          i
          、
          j
          ,為直角坐標(biāo)平面內(nèi)x軸,y軸正方向上的單位向量,若向量
          a
          =x
          i
          +(y+2)
          j
          ,
          b
          =x
          i
          +(y-2)
          j
          ,且|
          a
          |+|
          b
          |=8.
          (1)求點(diǎn)M(x,y)的軌跡C的方程;
          (2)過點(diǎn)(0,3)作直線l與曲線C交于A、B兩點(diǎn).設(shè)
          OP
          =
          OA
          +
          OB
          ,是否存在這樣的直線l,使得四邊形OAPB為菱形?若存在,求出直線l的方程;若不存在,請(qǐng)說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•西山區(qū)模擬)設(shè)x,y∈R,
          i
          ,
          j
          為直角坐標(biāo)平面內(nèi)x,y軸正方向上單位向量,若向量
          a
          =(x+
          3
          )
          i
          +y
          j
          ,
          b
          =(x-
          3
          )
          i
          +y
          j
          ,且|
          a
          |+|
          b
          |=2
          6

          (1)求點(diǎn)M(x,y)的軌跡C的方程;
          (2)若直線L與曲線C交于A、B兩點(diǎn),若
          OA
          OB
          =0
          ,求證直線L與某個(gè)定圓E相切,并求出定圓E的方程.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案