日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (2012年高考(上海理))對于數(shù)集,其中,,定義向量集

          . 若對于任意,存在,使得,則稱X

          具有性質(zhì)P. 例如具有性質(zhì)P.

          (1)若x>2,且,求x的值;

          (2)若X具有性質(zhì)P,求證:1?X,且當(dāng)xn>1時,x1=1;

          (3)若X具有性質(zhì)P,且x1=1,x2=q(q為常數(shù)),求有窮數(shù)列的通項公式.

           (1)選取,Y中與垂直的元素必有形式  

          所以x=2b,從而x=4  

          (2)證明:取.設(shè)滿足.

          ,所以、異號.

          因為-1是X中唯一的負(fù)數(shù),所以、中之一為-1,另一為1,

          故1ÎX  

          假設(shè),其中,則.

          選取,并設(shè)滿足,即,

          異號,從而、之中恰有一個為-1.

          =-1,則,矛盾;

          =-1,則,矛盾.

          所以x1=1  

          (3)【解法一】猜測,i=1, 2, , n  

          ,k=2, 3, , n.

          先證明:若具有性質(zhì)P,則也具有性質(zhì)P.

          任取,Î.當(dāng)、中出現(xiàn)-1時,顯然有滿足;

          當(dāng)時,≥1.

          因為具有性質(zhì)P,所以有,、Î,使得,

          從而中有一個是-1,不妨設(shè)=-1.

          假設(shè)ÎÏ,則.由,得,與

          Î矛盾.所以Î.從而也具有性質(zhì)P  

          現(xiàn)用數(shù)學(xué)歸納法證明:,i=1, 2, , n.

          當(dāng)n=2時,結(jié)論顯然成立;

          假設(shè)n=k時,有性質(zhì)P,則,i=1, 2, , k;

          當(dāng)n=k+1時,若有性質(zhì)P,則

          也有性質(zhì)P,所以.

          ,并設(shè)滿足,即.由此可得s與t中有且只有一個為-1.

          ,則,所以,這不可能;

          所以,,又,所以.

          綜上所述,,i=1, 2, , n  

          【解法二】設(shè),,則等價于.

          ,則數(shù)集X具有性質(zhì)P當(dāng)且僅當(dāng)數(shù)集B關(guān)于

          原點(diǎn)對稱  

          注意到-1是X中的唯一負(fù)數(shù),共有n-1個數(shù),

          所以也只有n-1個數(shù).

          由于,已有n-1個數(shù),對以下三角數(shù)陣

           

           

           

          注意到,所以,從而數(shù)列的通項公式為

          ,k=1, 2, , n  

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012年高考(重慶理))已知是定義在R上的偶函數(shù),且以2為周期,則“為[0,1]上的增函數(shù)”是“為[3,4]上的減函數(shù)”的( 。

          A.既不充分也不必要的條件 B.充分而不必要的條件    

          C.必要而不充分的條件  D.充要條件

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012年高考(福建文))若直線上存在點(diǎn)滿足約束條件,則實(shí)數(shù)的最大值為( 。

          A.-1  B.1   C.  D.2  

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012年高考(大綱理))(注意:在試卷上作答無效)

          函數(shù).定義數(shù)列如下:是過兩點(diǎn)的直線軸交點(diǎn)的橫坐標(biāo).

          (1)證明:;

          (2)求數(shù)列的通項公式.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012年高考(湖北理))已知向量,,設(shè)函數(shù)的圖象關(guān)于直線對稱,其中,為常數(shù),且.

          (Ⅰ)求函數(shù)的最小正周期;

          (Ⅱ)若的圖象經(jīng)過點(diǎn),求函數(shù)在區(qū)間上的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012年高考(安徽理))設(shè)函數(shù)

          (I)求函數(shù)的最小正周期;

          (II)設(shè)函數(shù)對任意,有,且當(dāng)時, ,求函數(shù)上的解析式.

           


          查看答案和解析>>

          同步練習(xí)冊答案