日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 設(shè)直線l的方程為y=kx-1,等軸雙曲線C:x2-y2=a2(a>0)的中心在原點,右焦點坐標為( ,0).
          (1)求雙曲線方程;
          (2)設(shè)直線l與雙曲線C的右支交于不同的兩點A,B,記AB中點為M,求k的取值范圍,并用k表示M點的坐標.
          (3)設(shè)點Q(-1,0),求直線QM在y軸上截距的取值范圍.
          【答案】分析:(1)由右焦點坐標為( ,0),可求出c的值,又因為等軸雙曲線中a,b相等,利用雙曲線中a,b,c的關(guān)系,就可求出a值,的到雙曲線方程.
          (2)聯(lián)立直線與雙曲線方程,消去y,得到關(guān)于x的一元二次方程,因為直線l與雙曲線C的右支交于不同的兩點A,B,所以方程有兩不同正根,△>0,x1+x2>0,x1x2>0,據(jù)此就可求出k的范圍.并用含k的式子表示M點坐標.
          (3)利用兩點式求出直線QM的方程,求出縱截距,用含k的式子表示,根據(jù)(2)中所求k的范圍,即可得到縱截距的范圍.
          解答:解:(1)由條件,∵c2=a2+b2=2a2,∴a=1,
          所以雙曲線方程為x2-y2=1.                    
          (2)由得(1-k2)x2+2kx-2=0,設(shè)A(x1,y1),B(x2,y2),
          因此
          解得,因此k∈(1,
          并且,
          所以.                            
          (3)直線MQ的方程為,
          令x=0,得,
          ,∴
          點評:本題主要考查了雙曲線方程的求法,以及直線與雙曲線相交,交點個數(shù)的判斷.
          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學 來源: 題型:

          設(shè)直線l的方程為y+4=m(x-3),當m取任意的實數(shù)時,這樣的直線必過一定點的坐標為
          (3,-4)
          (3,-4)

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          (2007•長寧區(qū)一模)設(shè)直線l的方程為y=kx-1,等軸雙曲線C:x2-y2=a2(a>0)的中心在原點,右焦點坐標為( 
          2
          ,0).
          (1)求雙曲線方程;
          (2)設(shè)直線l與雙曲線C的右支交于不同的兩點A,B,記AB中點為M,求k的取值范圍,并用k表示M點的坐標.
          (3)設(shè)點Q(-1,0),求直線QM在y軸上截距的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源:福建省會考題 題型:解答題

          已知圓C:(x-1)2+(y-2)2=1。
          (Ⅰ)求圓心坐標及圓的半徑長;
          (Ⅱ)設(shè)直線l的方程為y=kx+2,求證:直線l與圓C必相交;
          (Ⅲ)從圓外一點P(x,y)向圓引一條切線,切點為A,O為坐標原點,且有|PA|=|PO|,求點P的軌跡方程。

          查看答案和解析>>

          科目:高中數(shù)學 來源:2011-2012學年山東省高三第五次質(zhì)量檢測文科數(shù)學試卷(解析版) 題型:解答題

          已知中心在原點O,焦點F1、F2在x軸上的橢圓E經(jīng)過點C(2,2),且拋物線的焦點為F1.

          (Ⅰ)求橢圓E的方程;

          (Ⅱ)垂直于OC的直線l與橢圓E交于A、B兩點,當以AB為直徑的圓P與y軸相切時,求直線l的方程和圓P的方程.

          【解析】本試題主要考查了橢圓的方程的求解以及直線與橢圓的位置關(guān)系的運用。第一問中,設(shè)出橢圓的方程,然后結(jié)合拋物線的焦點坐標得到,又因為,這樣可知得到。第二問中設(shè)直線l的方程為y=-x+m與橢圓聯(lián)立方程組可以得到

          ,再利用可以結(jié)合韋達定理求解得到m的值和圓p的方程。

          解:(Ⅰ)設(shè)橢圓E的方程為

          ①………………………………1分

            ②………………2分

            ③       由①、②、③得a2=12,b2=6…………3分

          所以橢圓E的方程為…………………………4分

          (Ⅱ)依題意,直線OC斜率為1,由此設(shè)直線l的方程為y=-x+m,……………5分

           代入橢圓E方程,得…………………………6分

          ………………………7分

          、………………8分

          ………………………9分

          ……………………………10分

              當m=3時,直線l方程為y=-x+3,此時,x1 +x2=4,圓心為(2,1),半徑為2,

          圓P的方程為(x-2)2+(y-1)2=4;………………………………11分

          同理,當m=-3時,直線l方程為y=-x-3,

          圓P的方程為(x+2)2+(y+1)2=4

           

          查看答案和解析>>

          同步練習冊答案