日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知橢圓左、右焦點(diǎn)分別為F1(-c,0),F(xiàn)2(c,0),點(diǎn)A、B坐標(biāo)為A(a,0),B(0,b),若△ABC面積為,∠BF2A=120°.
          (1)求橢圓的標(biāo)準(zhǔn)方程;
          (2)若直線y=kx+2與橢圓交于不同的兩點(diǎn)M、N,且以MN為直徑的圓恰好過原點(diǎn),求實(shí)數(shù)k的取值;
          (3)動(dòng)點(diǎn)P使得、、成公差小于零的等差數(shù)列,記θ為向量的夾角,求θ的取值范圍.
          【答案】分析:(1)在RT△BOF2中,∠BF2O=60°,計(jì)算得:,由,可計(jì)算得,從而可求橢圓標(biāo)準(zhǔn)方程.
          (2)設(shè)直線l的方程為y=kx+2.與橢圓方程聯(lián)立,根據(jù)判別式大于0求得k的范圍,設(shè)M,N兩點(diǎn)坐標(biāo)分別為M(x1,y1),N(x2,y2).根據(jù)韋達(dá)定理求得x1+x2和x1x2,進(jìn)而根據(jù)若以MN為直徑的圓恰好過原點(diǎn),x1•x2+y1•y2=0,代入即可求得k,最后檢驗(yàn)看是否符合題意.
          (3)設(shè)P的坐標(biāo),由、、成公差小于零的等差數(shù)列得:x2+y2=33≥x2>0
          從而,所以可求θ的取值范圍..
          解答:解:(1)在RT△BOF2中,∠BF2O=60°,計(jì)算得:
          ,計(jì)算得,所以橢圓標(biāo)準(zhǔn)方程為
          (2)設(shè)交點(diǎn)M、N坐標(biāo)為M(x1,y1),N(x2,y2
          將直線y=kx+2代入橢圓整理得方程,3+4k2)x2+16kx+4=0;
          由△>0得
          由MN為直徑的圓過原點(diǎn)得x1•x2+y1•y2=0,所以x1•x2+(kx1+2)(kx2+2)=0,計(jì)算并檢驗(yàn)得即為所求.
          (3)設(shè)P(x,y),由、成公差小于零的等差數(shù)列得:x2+y2=33≥x2>0
          所以,所以
          點(diǎn)評(píng):本題主要考查橢圓標(biāo)準(zhǔn)方程的求解,考查直線與橢圓的位置關(guān)系,考查學(xué)生分析解決問題的能力.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知橢圓C:
          x2
          a2
          +
          y2
          b2
          =1
          (a>b>0),其焦距為2c,若
          c
          a
          =
          5
          -1
          2
          (≈0.618),則稱橢圓C為“黃金橢圓”.
          (1)求證:在黃金橢圓C:
          x2
          a2
          +
          y2
          b2
          =1
          (a>b>0)中,a、b、c成等比數(shù)列.
          (2)黃金橢圓C:
          x2
          a2
          +
          y2
          b2
          =1
          (a>b>0)的右焦點(diǎn)為F2(c,0),P為橢圓C上的任意一點(diǎn).是否存在過點(diǎn)F2、P的直線l,使l與y軸的交點(diǎn)R滿足
          RP
          =-3
          PF2
          ?若存在,求直線l的斜率k;若不存在,請(qǐng)說明理由.
          (3)在黃金橢圓中有真命題:已知黃金橢圓C:
          x2
          a2
          +
          y2
          b2
          =1
          (a>b>0)的左、右焦點(diǎn)分別是F1(-c,0)、F2(c,0),以A(-a,0)、B(a,0)、D(0,-b)、E(0,b)為頂點(diǎn)的菱形ADBE的內(nèi)切圓過焦點(diǎn)F1、F2.試寫出“黃金雙曲線”的定義;對(duì)于上述命題,在黃金雙曲線中寫出相關(guān)的真命題,并加以證明.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知中心在坐標(biāo)原點(diǎn)、焦點(diǎn)在x軸上橢圓的離心率e=
          3
          3
          ,以原點(diǎn)為圓心,橢圓的短半軸長為半徑的圓與直線y=x+2相切.
          (1)求該橢圓的標(biāo)準(zhǔn)方程;
          (2)設(shè)橢圓的左,右焦點(diǎn)分別是F1和F2,直線l1過F2且與x軸垂直,動(dòng)直線l2與y軸垂直,l2交l1于點(diǎn)P,求線段PF1的垂直平分線與l2的交點(diǎn)M的軌跡方程,并指明曲線類型.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2012•茂名二模)已知橢圓
          x2
          a2
          +
          y2
          b2
          =1
          (a>b>0)的左、右焦點(diǎn)分別是F1(-c,0)、F2(c,0),離心率為
          1
          2
          ,橢圓上的動(dòng)點(diǎn)P到直線l:x=
          a2
          c
          的最小距離為2,延長F2P至Q使得|
          F2Q
          |=2a,線段F1Q上存在異于F1的點(diǎn)T滿足
          PT
          TF1
          =0

          (1)求橢圓的方程;
          (2)求點(diǎn)T的軌跡C的方程;
          (3)求證:過直線l:x=
          a2
          c
          上任意一點(diǎn)必可以作兩條直線與T的軌跡C相切,并且過兩切點(diǎn)的直線經(jīng)過定點(diǎn).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知橢圓C:
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)
          的離心率為
          2
          2
          ,左、右焦點(diǎn)分別是F1,F(xiàn)2,過點(diǎn)F1的直線l交C于A,B兩點(diǎn),且△ABF2的周長為4
          2
          .則橢圓C的方程為
           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年遼寧省五校協(xié)作體高三摸底考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

          (本小題滿分12分)

          已知橢圓左、右焦點(diǎn)分別為F1、F2,點(diǎn),點(diǎn)F2在線段PF1的中垂線上。

          (1)求橢圓C的方程;

          (2)設(shè)直線與橢圓C交于M、N兩點(diǎn),直線F2M與F2N的傾斜角互補(bǔ),求證:直線過定點(diǎn),并求該定點(diǎn)的坐標(biāo)。

           

          查看答案和解析>>

          同步練習(xí)冊(cè)答案