日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】某廠銷售部以箱為單位銷售某種零件,每箱的定價為200元,低于100箱按原價銷售;不低于100箱通過雙方議價,買方能以優(yōu)惠成交的概率為0.6,以優(yōu)惠成交的概率為0.4.

          (1)甲、乙兩單位都要在該廠購買150箱這種零件,兩單位各自達(dá)成的成交價相互獨立,求甲單位優(yōu)惠比例不低于乙單位優(yōu)惠比例的概率;

          (2)某單位需要這種零件650箱,求購買總價的數(shù)學(xué)期望.

          【答案】(1)0.76;(2)120640元.

          【解析】

          (1)先求甲單位優(yōu)惠比例低于乙單位優(yōu)惠比例的概率,再由對立事件得概率即可求解;(2)先寫出在折扣優(yōu)惠中每箱零件的價格為的取值,再列分布列求解即可

          (1)因為甲單位優(yōu)惠比例低于乙單位優(yōu)惠比例的概率為,

          所以甲單位優(yōu)惠比例不低于乙單位優(yōu)惠比例的概率.

          (2)設(shè)在折扣優(yōu)惠中每箱零件的價格為元,則或188.

          的分布列為

          184

          188

          0.6

          0.4

          .

          從而購買總價的數(shù)學(xué)期望為元.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖所示:在五面體ABCDEF中,四邊形EDCF是正方形,AD=DE=1,∠ADE=90°,∠ADC=∠DCB=120°.

          (Ⅰ)求證:平面ABCD⊥平面EDCF;

          (Ⅱ)求三棱錐A-BDF的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】楊輝三角,又稱帕斯卡三角,是二項式系數(shù)在三角形中的一種幾何排列.在我國南宋數(shù)學(xué)家楊輝所著的《詳解九章算法》(1261年)一書中用如圖所示的三角形解釋二項式乘方展開式的系數(shù)規(guī)律.現(xiàn)把楊輝三角中的數(shù)從上到下,從左到右依次排列,得數(shù)列:1,1,1,1,2,1,1,3,3,1,1,4,6,4,1…….記作數(shù)列,若數(shù)列的前項和為,則 ( )

          A. B. C. D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在直角坐標(biāo)系中已知A(4,O)、B(0,2)、C(-1,0)、D(0,-2),E在線段AB(不含端點),F在線段CD,E、O、F三點共線.

          (1)F為線段CD的中點,證明:

          (2)“F為線段CD的中點,的逆命題是否成立?說明理由;

          (3)設(shè),的值。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在四棱錐中,,, ODE的中點,F的中點,平面平面BCED

          1)求證:平面 平面

          2)線段OC上是否存在點G,使得平面EFG?說明理由。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓的離心率,且經(jīng)過點

          求橢圓的方程;

          過點且不與軸重合的直線與橢圓交于不同的兩點,,過右焦點的直線分別交橢圓于點,設(shè), ,的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,四棱錐中,底面為平行四邊形,的中點,平面的中點,,

          1)證明:平面

          2)如果二面角的正切值為2,求的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知動圓過定點,且與定直線相切.

          1)求動圓圓心的軌跡的方程;

          2)過點的任一條直線與軌跡交于不同的兩點,試探究在軸上是否存在定點(異于點),使得?若存在,求點的坐標(biāo);若不存在,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】為了了解地區(qū)足球特色學(xué)校的發(fā)展?fàn)顩r,某調(diào)查機(jī)構(gòu)得到如下統(tǒng)計數(shù)據(jù):

          年份

          2014

          2015

          2016

          2017

          2018

          足球特色學(xué)校(百個)

          0.30

          0.60

          1.00

          1.40

          1.70

          (Ⅰ)根據(jù)上表數(shù)據(jù),計算的相關(guān)系數(shù),并說明的線性相關(guān)性強(qiáng)弱(已知:,則認(rèn)為線性相關(guān)性很強(qiáng);,則認(rèn)為線性相關(guān)性一般;,則認(rèn)為線性相關(guān)性較弱);

          (Ⅱ)求關(guān)于的線性回歸方程,并預(yù)測地區(qū)2019年足球特色學(xué)校的個數(shù)(精確到個)

          參考公式:,,,,.

          查看答案和解析>>

          同步練習(xí)冊答案