日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 動(dòng)點(diǎn)的軌跡的方程為,過焦點(diǎn)的直線相交于兩點(diǎn), 為坐標(biāo)原點(diǎn)。(1)求的值;

          (2)設(shè),當(dāng)三角形的面積時(shí),求的取值范圍.

           

          【答案】

          解:(1),設(shè)直線的方程為,將其與的方程聯(lián)立,消去.   ………     3分

          設(shè)的坐標(biāo)分別為,

          .  ,   ………        5分

            ………    6分

          (2), 

           .    

          可得       ……… 9分

          故三角形的面積,

          因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052406523759379594/SYS201205240654299218951185_DA.files/image020.png">恒成立,所以只要解.

          即可解得.      ………12分

           

          【解析】略

           

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知點(diǎn)P是圓x2+y2=1上的動(dòng)點(diǎn),點(diǎn)P在y軸上的射影為Q,設(shè)滿足條件
          QM
          =2
          QP
          的點(diǎn)M的軌跡為曲線C.
          (1)求曲線C的方程;
          (2)設(shè)過點(diǎn)N(1,0)且斜率為k1(k1≠0)的直線l被曲線C所截得的弦的中點(diǎn)為A,O為坐標(biāo)原點(diǎn),直線OA的斜率為k2,求k12+k22的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2009•閘北區(qū)二模)和平面解析幾何的觀點(diǎn)相同,在空間中,空間曲面可以看作是適合某種條件的動(dòng)點(diǎn)的軌跡.一般來說,在空間直角坐標(biāo)系O-xyz中,空間曲面的方程是一個(gè)三元方程F(x,y,z)=0.
          (Ⅰ)在直角坐標(biāo)系O-xyz中,求到定點(diǎn)M0(0,2,-1)的距離為3的動(dòng)點(diǎn)P的軌跡(球面)方程;
          (Ⅱ)如圖,設(shè)空間有一定點(diǎn)F到一定平面α的距離為常數(shù)p>0,即|FM|=2,定義曲面C為到定點(diǎn)F與到定平面α的距離相等(|PF|=|PN|)的動(dòng)點(diǎn)P的軌跡,試建立適當(dāng)?shù)目臻g直角坐標(biāo)系O-xyz,求曲面C的方程;  
          (Ⅲ)請類比平面解析幾何中對二次曲線的研究,討論曲面C的幾何性質(zhì).并在圖中通過畫出曲面C與各坐標(biāo)平面的交線(如果存在)或與坐標(biāo)平面平行的平面的交線(如果必要)表示曲面C的大致圖形.畫交線時(shí),請用虛線表示被曲面C自身遮擋部分.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2014屆山東省濟(jì)寧市高二5月質(zhì)量檢測文科數(shù)學(xué)試卷(解析版) 題型:解答題

          如圖,在平面直角坐標(biāo)系中,設(shè)點(diǎn)),直線:,點(diǎn)在直線上移動(dòng),是線段軸的交點(diǎn), 過、分別作直線、,使, .

          (1)求動(dòng)點(diǎn)的軌跡的方程;

          (2)在直線上任取一點(diǎn)做曲線的兩條切線,設(shè)切點(diǎn)為、,求證:直線恒過一定點(diǎn);

          (3)對(2)求證:當(dāng)直線的斜率存在時(shí),直線的斜率的倒數(shù)成等差數(shù)列.

           

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年廣東省珠海市高三第一次月考文科數(shù)學(xué) 題型:解答題

          (本小題滿分14分)在平面直角坐標(biāo)系中,設(shè)點(diǎn),直線:,點(diǎn)在直線上移動(dòng),是線段軸的交點(diǎn),

          (I)求動(dòng)點(diǎn)的軌跡的方程;

          (II)設(shè)圓,且圓心在曲線上,是圓軸上截得的弦,當(dāng)運(yùn)動(dòng)時(shí)弦長是否為定值?請說明理由.

           

           

           

           

           

           

           

           

          查看答案和解析>>

          同步練習(xí)冊答案