日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù)f(x)對(duì)任意實(shí)數(shù)x,y恒有f(x+y)=f(x)+f(y)且當(dāng)x>0,f(x)<0.
          (Ⅰ)判斷f(x)的奇偶性,并證明之;
          (Ⅱ)判斷f(x)的單調(diào)性,并證明之.
          分析:(Ⅰ)令x=y=0求得f(0)=0,令y為-x,f(x)+f(-x)=f(0)=0,即可判斷f(x)的奇偶性;
          (Ⅱ)利用單調(diào)性的定義即可判斷f(x)的單調(diào)性,在R上任取x1,x2,且令△x=x1-x2>0,可證得△y=f(x1)-f(x2)<0,問(wèn)題得到解決.
          解答:解 (Ⅰ)函數(shù)f(x)為奇函數(shù).…(2分)
          證明:∵函數(shù)f(x)的定義域?yàn)镽,而在f(x+y)=f(x)+f(y)中,令y為-x,
          則有f(0)=f(x)+f(-x)…(4分)
          又將x,y都取0代入得f(0)=0,即:f(-x)=-f(x),
          又由x在R中的任意性可知,函數(shù)f(x)為奇函數(shù).…(6分)
          (Ⅱ)函數(shù)f(x)在R上為單調(diào)減函數(shù)…(8分)
          證明:在R上任取x1,x2,且令△x=x1-x2>0,
          由△y=f(x1)-f(x2)=f(x1-x2+x2)-f(x2)=f(△x)+f(x2)-f(x2)=f(△x)…(10分)
          又由題可知當(dāng)x>0,f(x)<0,故f(△x)<0,從而△y<0,
          這樣就說(shuō)明了函數(shù)f(x)在R上為單調(diào)減函數(shù).…(12分)
          點(diǎn)評(píng):本題考查抽象函數(shù)及其應(yīng)用,難點(diǎn)在于△y=f(x1)-f(x2)=f(x1-x2+x2)-f(x2)的轉(zhuǎn)化,突出考查轉(zhuǎn)化思想與綜合應(yīng)用單調(diào)性定義解決問(wèn)題的能力,屬于中檔題.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知函數(shù)f(x)=ex,直線l的方程為y=kx+b.
          (1)求過(guò)函數(shù)圖象上的任一點(diǎn)P(t,f(t))的切線方程;
          (2)若直線l是曲線y=f(x)的切線,求證:f(x)≥kx+b對(duì)任意x∈R成立;
          (3)若f(x)≥kx+b對(duì)任意x∈[0,+∞)成立,求實(shí)數(shù)k、b應(yīng)滿足的條件.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          若實(shí)數(shù)x、y、m滿足|x-m|>|y-m|,則稱x比y遠(yuǎn)離m.
          (1)若x2-1比1遠(yuǎn)離0,求x的取值范圍;
          (2)對(duì)任意兩個(gè)不相等的正數(shù)a、b,證明:a3+b3比a2b+ab2遠(yuǎn)離2ab
          ab

          (3)已知函數(shù)f(x)的定義域D={{x|x≠
          2
          +
          π
          4
          ,k∈Z,x∈R}
          .任取x∈D,f(x)等于sinx和cosx中遠(yuǎn)離0的那個(gè)值.寫(xiě)出函數(shù)f(x)的解析式,并指出它的基本性質(zhì)(結(jié)論不要求證明).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          若實(shí)數(shù)x、y、m滿足|x-m|<|y-m|,則稱x比y接近m.
          (1)若x2-1比3接近0,求x的取值范圍;
          (2)對(duì)任意兩個(gè)不相等的正數(shù)a、b,證明:a2b+ab2比a3+b3接近2ab
          ab
          ;
          (3)已知函數(shù)f(x)的定義域D{x|x≠kπ,k∈Z,x∈R}.任取x∈D,f(x)等于1+sinx和1-sinx中接近0的那個(gè)值.寫(xiě)出函數(shù)f(x)的解析式,并指出它的奇偶性、最小正周期、最小值和單調(diào)性(結(jié)論不要求證明).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          已知函數(shù)f(x)=
          ex
          ex+1

          (Ⅰ)證明函數(shù)y=f(x)的圖象關(guān)于點(diǎn)(0,
          1
          2
          )對(duì)稱;
          (Ⅱ)設(shè)y=f-1(x)為y=f(x)的反函數(shù),令g(x)=f-1(
          x+1
          x+2
          ),是否存在實(shí)數(shù)b
          ,使得任給a∈[
          1
          4
          ,
          1
          3
          ],對(duì)任意x∈(0,+∞).不等式g(x)>x-ax2
          +b恒成立?若存在,求b的取值范圍;若不存在,說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2012•海淀區(qū)一模)已知函數(shù)f(x)=
          1,x∈Q
          0,x∈CRQ
          ,則f(f(x))=
          1
          1

          下面三個(gè)命題中,所有真命題的序號(hào)是
          ①②③
          ①②③

          ①函數(shù)f(x)是偶函數(shù);
          ②任取一個(gè)不為零的有理數(shù)T,f(x+T)=f(x)對(duì)x∈R恒成立;
          ③存在三個(gè)點(diǎn)A(x1,f(x1)),B(x2,f(x2)),C(x3,f(x3)),使得△ABC為等邊三角形.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案