日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】在△ABC中,角A,B,C的對邊分別為a,b,c.設(shè)向量 =(a,c), =(cosC,cosA).
          (1)若 ,c= a,求角A;
          (2)若 =3bsinB,cosA= ,求cosC的值.

          【答案】
          (1)解:∵ ,∴acosA=ccosC.

          由正弦定理,得sinAcosA=sinCcosC.

          化簡,得sin2A=sin2C.

          ∵A,C∈(0,π),∴2A=2C或2A+2C=π,

          從而A=C(舍)或A+C= .∴

          在Rt△ABC中,tanA= = ,


          (2)解:∵ =3bcosB,∴acosC+ccosA=3bsinB.

          由正弦定理,得sinAcosC+sinCcosA=3sin2B,從而sin(A+C)=3sin2B.

          ∵A+B+C=π,∴sin(A+C)=sinB. 從而sinB=

          ,A∈(0,π),∴ ,sinA=

          ∵sinA>sinB,∴a>b,從而A>B,B為銳角,

          ∴cosC=﹣cos(A+B)=﹣cosAcosB+sinAsinB,

          =


          【解析】(1)利用向量共線定理和倍角公式可得sin2A=sin2C.再利用正弦函數(shù)的單調(diào)性、誘導(dǎo)公式即可得出;(2)利用向量垂直與數(shù)量積的關(guān)系、正弦定理、兩角和差的余弦公式、同角三角函數(shù)基本關(guān)系式即可得出.
          【考點(diǎn)精析】掌握正弦定理的定義是解答本題的根本,需要知道正弦定理:

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,四棱錐P﹣ABCD中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M為線段AD上一點(diǎn),AM=2MD,N為PC的中點(diǎn).
          (1)證明:MN∥平面PAB;
          (2)求直線AN與平面PMN所成角的正弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知經(jīng)過原點(diǎn)的直線與橢圓交于兩點(diǎn),點(diǎn)為橢圓上不同于的一點(diǎn),直線的斜率均存在,且直線的斜率之積為.

          (1)求橢圓的離心率;

          (2)若,設(shè)分別為橢圓的左、右焦點(diǎn),斜率為的直線經(jīng)過橢圓的右焦點(diǎn),且與橢圓交于兩點(diǎn),若點(diǎn)在以為直徑的圓內(nèi)部,求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知?jiǎng)訄A恒過點(diǎn),且與直線 相切.

          (1)求動(dòng)圓圓心的軌跡的方程;

          (2)探究在曲線上,是否存在異于原點(diǎn)的兩點(diǎn), ,當(dāng)時(shí),直線恒過定點(diǎn)?若存在,求出該定點(diǎn)坐標(biāo);若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】由于被墨水污染,一道數(shù)學(xué)題僅能見到如下文字:已知二次函數(shù)的圖像經(jīng)過,求證:這個(gè)二次函數(shù)的圖像關(guān)于直線對稱,根據(jù)已知消息,題中二次函數(shù)圖像不具有的性質(zhì)是( ).

          A. 軸上的截線段長是 B. 軸交于點(diǎn)

          C. 頂點(diǎn) D. 過點(diǎn)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知數(shù)列的前n項(xiàng)和, 是等差數(shù)列,且.

          )求數(shù)列的通項(xiàng)公式;

          )令.求數(shù)列的前n項(xiàng)和.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】對于函數(shù),若,則稱不動(dòng)點(diǎn);若,則稱穩(wěn)定點(diǎn).函數(shù)不動(dòng)點(diǎn)穩(wěn)定點(diǎn)的集合分別記為,即,

          )設(shè)函數(shù),求集合

          )求證:

          )設(shè)函數(shù),且,求證:

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知拋物線的焦點(diǎn)為,直線.

          (1)若拋物線和直線沒有公共點(diǎn),求的取值范圍;

          (2)若,且拋物線和直線只有一個(gè)公共點(diǎn)時(shí),求的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知首項(xiàng)都是1的兩個(gè)數(shù)列{},{}(≠0,n∈N*)滿足

          (1)令,求數(shù)列{}的通項(xiàng)公式;

          (2)若,求數(shù)列{}的前n項(xiàng)和.

          查看答案和解析>>

          同步練習(xí)冊答案