日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù)和函數(shù)g(x)=2x-2-x
          (1)判斷的奇偶性,并判斷和證明y=lgh(x)在定義域上的單調(diào)性;
          (2)若函數(shù)h(x)=f(x)+λg(x)是R上的增函數(shù),求實(shí)數(shù)λ的取值范圍.
          【答案】分析:(1)由題意h(x)===,代入檢驗(yàn)h(-x)與h(x)的關(guān)系即可判斷函數(shù)的奇偶性;由h(x)>0可得x>0
          設(shè)0<x1<x2,則通過判斷h(x1)-h(x2)=的正負(fù)可先判斷h(x)在(0,+∞)上的單調(diào)性,然后根據(jù)復(fù)合函數(shù)的單調(diào)性即可
          (2)由函數(shù)h(x)=f(x)+λg(x)是R上的增函數(shù)可得h(x1)-h(x2)>0恒成立,整理可得恒成立(t=),從而可求λ的范圍
          解答:解:(1)f(x)==,
          ∵h(yuǎn)(x)===
          ==-h(x)
          ∴函數(shù)h(x)為奇函數(shù)  
          =由h(x)>0可得x>0
          設(shè)0<x1<x2,則h(x1)-h(x2)==
          ∵0<x1<x2,則,
          ∴h(x1)>h(x2),lgh(x1)>lgh(x2
          ∴y1>y2
          函數(shù)y=lgh(x)在(0,+∞)上遞減…(6分)
          (2)∵函數(shù)h(x)=f(x)+λg(x)是R上的增函數(shù)

          恒成立
          ∴λ≥1…(8分)
          點(diǎn)評:本題主要考查了函數(shù)奇偶性的判斷及理由定義證明、判斷函數(shù)的單調(diào)性,及函數(shù)單調(diào)性的定義的應(yīng)用,屬于函數(shù)知識的綜合應(yīng)用,具有一定的綜合性.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知函數(shù)數(shù)學(xué)公式和函數(shù)g(x)=lnx,記F(x)=f(x)+g(x).
          (1)當(dāng)數(shù)學(xué)公式時(shí),若f(x)在[1,2]上的最大值是f(2),求實(shí)數(shù)a的取值范圍;
          (2)當(dāng)a=1時(shí),判斷F(x)在其定義域內(nèi)是否有極值,并予以證明;
          (3)對任意的數(shù)學(xué)公式,若F(x)在其定義域內(nèi)既有極大值又有極小值,試求實(shí)數(shù)a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年底江蘇省連云港市贛榆高級中學(xué)高三(下)摸底數(shù)學(xué)試卷(解析版) 題型:解答題

          已知函數(shù)和函數(shù)g(x)=lnx,記F(x)=f(x)+g(x).
          (1)當(dāng)時(shí),若f(x)在[1,2]上的最大值是f(2),求實(shí)數(shù)a的取值范圍;
          (2)當(dāng)a=1時(shí),判斷F(x)在其定義域內(nèi)是否有極值,并予以證明;
          (3)對任意的,若F(x)在其定義域內(nèi)既有極大值又有極小值,試求實(shí)數(shù)a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年江蘇省連云港市贛榆高級中學(xué)高三(下)摸底數(shù)學(xué)試卷(解析版) 題型:解答題

          已知函數(shù)和函數(shù)g(x)=lnx,記F(x)=f(x)+g(x).
          (1)當(dāng)時(shí),若f(x)在[1,2]上的最大值是f(2),求實(shí)數(shù)a的取值范圍;
          (2)當(dāng)a=1時(shí),判斷F(x)在其定義域內(nèi)是否有極值,并予以證明;
          (3)對任意的,若F(x)在其定義域內(nèi)既有極大值又有極小值,試求實(shí)數(shù)a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:2010年江蘇省南通市通州區(qū)高三4月模擬數(shù)學(xué)試卷(解析版) 題型:解答題

          已知函數(shù)和函數(shù)g(x)=lnx,記F(x)=f(x)+g(x).
          (1)當(dāng)時(shí),若f(x)在[1,2]上的最大值是f(2),求實(shí)數(shù)a的取值范圍;
          (2)當(dāng)a=1時(shí),判斷F(x)在其定義域內(nèi)是否有極值,并予以證明;
          (3)對任意的,若F(x)在其定義域內(nèi)既有極大值又有極小值,試求實(shí)數(shù)a的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊答案