日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知四棱錐中,底面為直角梯形,平面,且,,.

          1)求證:平面平面;

          2)若與平面所成的角為,求二面角的余弦值.

          【答案】1)證明見解析(2

          【解析】

          1)證明:取的中點(diǎn),連接,,.根據(jù)平面幾何知識(shí)和線面垂直的判定可證得平面,再證得,可證明平面平面.

          2)由線面角的定義可得與平面所成的角,再以點(diǎn)為坐標(biāo)原點(diǎn),分別以,,所在直線為,軸,建立如圖所示的空間直角坐標(biāo)系,求得平面和平面的法向量,由二面角的向量求解方法可求得二面角的余弦值.

          解:(1)證明:取的中點(diǎn),連接,.

          ,∴.

          又∵,∴四邊形為正方形,則.

          平面平面,∴.

          ,∴平面.

          ,,∴四邊形為平行四邊形,∴,

          平面.平面,

          ∴平面平面.

          2)∵平面,∴與平面所成的角,

          ,則.

          設(shè),則,,.

          以點(diǎn)為坐標(biāo)原點(diǎn),分別以,所在直線為,軸,建立如圖所示的空間直角坐標(biāo)系,

          ,,,.

          平面,∴平面的一個(gè)法向量.

          設(shè)平面的法向量,∵,,

          ,取,則.

          設(shè)二面角的平面角為,∴.

          由圖可知二面角為銳角,故二面角的余弦值為.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)fx)=|x2|+|x+1|

          1)解關(guān)于x的不等式fx)≤5;

          2)若函數(shù)fx)的最小值記為m,設(shè)a,b,c均為正實(shí)數(shù),且a+4b+9cm,求的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù),.

          1)若,求的零點(diǎn)個(gè)數(shù);

          2)證明:,.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某險(xiǎn)種的基本保費(fèi)為a(單位:元),繼續(xù)購買該險(xiǎn)種的投保人稱為續(xù)保人,續(xù)保人本年度的保費(fèi)與其上年度出險(xiǎn)次數(shù)的關(guān)聯(lián)如下:

          上年度出險(xiǎn)次數(shù)

          0

          1

          2

          3

          4

          ≥5

          保費(fèi)

          0.85a

          a

          1.25a

          1.5a

          1.75a

          2a

          隨機(jī)調(diào)查了該險(xiǎn)種的200名續(xù)保人在一年內(nèi)的出險(xiǎn)情況,得到如下統(tǒng)計(jì)表:

          出險(xiǎn)次數(shù)

          0

          1

          2

          3

          4

          ≥5

          頻數(shù)

          60

          50

          30

          30

          20

          10

          (1)記A為事件:“一續(xù)保人本年度的保費(fèi)不高于基本保費(fèi)”,求P(A)的估計(jì)值;

          (2)記B為事件:“一續(xù)保人本年度的保費(fèi)高于基本保費(fèi)但不高于基本保費(fèi)的160%”,求P(B)的估計(jì)值;

          (3)求續(xù)保人本年度平均保費(fèi)的估計(jì)值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖所示,在四棱錐中,四邊形為矩形,為等腰三角形,,平面平面,且,,分別為的中點(diǎn).

          1)證明:平面;

          2)證明:平面平面

          3)求四棱錐的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù).

          1)若上存在極大值,求的取值范圍;

          2)若軸是曲線的一條切線,證明:當(dāng)時(shí),.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某苗木基地常年供應(yīng)多種規(guī)格的優(yōu)質(zhì)樹苗.為更好地銷售樹苗,建設(shè)生態(tài)文明家鄉(xiāng)和美好家園,基地積極主動(dòng)地聯(lián)系了甲、乙、丙三家公司,假定基地得到公司甲、乙、丙的購買合同的概率分別、,且基地是否得到三家公司的購買合同是相互獨(dú)立的.

          1)若公司甲計(jì)劃與基地簽訂300棵銀杏實(shí)生苗的銷售合同,每棵銀杏實(shí)生苗的價(jià)格為90元,栽種后,每棵樹苗當(dāng)年的成活率都為0.9,對當(dāng)年沒有成活的樹苗,第二年需再補(bǔ)種1.現(xiàn)公司甲為苗木基地提供了兩種售后方案,

          方案一:公司甲購買300棵銀杏樹苗后,基地需提供一年一次,共計(jì)兩年的補(bǔ)種服務(wù),且每次補(bǔ)種人工及運(yùn)輸費(fèi)用平均為800元;

          方案二:公司甲購買300棵銀杏樹苗后,基地一次性地多給公司甲60棵樹苗,后期的移栽培育工作由公司甲自行負(fù)責(zé).

          若基地首次運(yùn)送方案一的300棵樹苗及方案二的360棵樹苗的運(yùn)費(fèi)及栽種費(fèi)用合計(jì)都為1600元,試估算兩種方案下苗木基地的合同收益分別是多少?

          2)記為該基地得到三家公司購買合同的個(gè)數(shù),若,求隨機(jī)變量的分布列與數(shù)學(xué)期望.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,是邊長為2的正方形,平面,且

          (Ⅰ)求證:平面平面

          (Ⅱ)線段上是否存在一點(diǎn),使二而角等于45°?若存在,請找出點(diǎn)的位置;若不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,橢圓的左、右焦點(diǎn)分別為,橢圓上一點(diǎn)與兩焦點(diǎn)構(gòu)成的三角形的周長為6,離心率為

          (Ⅰ)求橢圓的方程;

          (Ⅱ)過點(diǎn)的直線交橢圓兩點(diǎn),問在軸上是否存在定點(diǎn),使得為定值?證明你的結(jié)論.

          查看答案和解析>>

          同步練習(xí)冊答案