日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (2013•朝陽區(qū)一模)在△ABC中,a,b,c分別為角A,B,C所對的邊.已知角A為銳角,且b=3asinB,則tanA=
          2
          4
          2
          4
          分析:由條件,利用正弦定理可得 sinB=3sinAsinB,求得sinA的值,再由同角三角函數(shù)的基本關(guān)系求得tanA的值.
          解答:解:在△ABC中,角A為銳角,且b=3asinB,由正弦定理可得 sinB=3sinAsinB,∵sinA≠0,
          故sinA=
          1
          3
          ,∴cosA=
          1-sin2A
          =
          2
          2
          3
           tanA=
          sinA
          cosA
          =
          2
          4
          ,
          故答案為
          2
          4
          點評:本題主要考查正弦定理,同角三角函數(shù)的基本關(guān)系,屬于中檔題.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          (2013•朝陽區(qū)一模)已知函數(shù)f(x)=
          3
          2
          sinωx-sin2
          ωx
          2
          +
          1
          2
          (ω>0)的最小正周期為π.
          (Ⅰ)求ω的值及函數(shù)f(x)的單調(diào)遞增區(qū)間;
          (Ⅱ)當x∈[0,
          π
          2
          ]
          時,求函數(shù)f(x)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2013•朝陽區(qū)一模)若直線y=x+m與圓x2+y2+4x+2=0有兩個不同的公共點,則實數(shù)m的取值范圍是( 。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2013•朝陽區(qū)一模)盒子中裝有四張大小形狀均相同的卡片,卡片上分別標有數(shù)字-1,0,1,2.稱“從盒中隨機抽取一張,記下卡片上的數(shù)字后并放回”為一次試驗(設(shè)每次試驗的結(jié)果互不影響).
          (Ⅰ)在一次試驗中,求卡片上的數(shù)字為正數(shù)的概率;
          (Ⅱ)在四次試驗中,求至少有兩次卡片上的數(shù)字都為正數(shù)的概率;
          (Ⅲ)在兩次試驗中,記卡片上的數(shù)字分別為ξ,η,試求隨機變量X=ξ•η的分布列與數(shù)學(xué)期望EX.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2013•朝陽區(qū)一模)已知函數(shù)f(x)=x2-(a+2)x+alnx+2a+2,其中a≤2.
          (Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
          (Ⅱ)若函數(shù)f(x)在(0,2]上有且只有一個零點,求實數(shù)a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2013•朝陽區(qū)一模)設(shè)τ=(x1,x2,…,x10)是數(shù)1,2,3,4,5,6,7,8,9,10的任意一個全排列,定義S(τ)=
          10k=1
          |2xk-3xk+1|
          ,其中x11=x1
          (Ⅰ)若τ=(10,9,8,7,6,5,4,3,2,1),求S(τ)的值;
          (Ⅱ)求S(τ)的最大值;
          (Ⅲ)求使S(τ)達到最大值的所有排列τ的個數(shù).

          查看答案和解析>>

          同步練習(xí)冊答案