日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 判斷如下集合A與B之間有怎樣的包含或相等關(guān)系:
          (1)A={x|x=2k-1,k∈Z},B={x|x=2m+1,m∈Z};
          (2)A={x|x=2m,m∈Z},B={x|x=4n,n∈Z}.
          【答案】分析:(1)根據(jù)兩個集合元素的特征,判斷出都是由奇數(shù)構(gòu)成的,根據(jù)集合相等得A=B;
          (2)根據(jù)“x=4n=2•2n”判斷出B中元素是由A中部分元素構(gòu)成,再由子集的定義判斷即可.
          解答:解:(1)∵x=2k-1,k∈Z和x=2m+1,m∈Z,
          且2k-1和2m+1都能被2除余1,則都是奇數(shù),
          ∴A、B都是由奇數(shù)構(gòu)成的,即A=B.
          (2)由題意知,A={x|x=2m,m∈Z},B={x|x=4n,n∈Z},且x=4n=2•2n,
          ∵x=2m中,m∈Z,∴m可以取奇數(shù),也可以取偶數(shù);
          ∴x=4n中,2n只能是偶數(shù).
          故集合A、B的元素都是偶數(shù).
          但B中元素是由A中部分元素構(gòu)成,則有B?A.
          點(diǎn)評:本題考查了集合間的包含關(guān)系,但此題是集合中較抽象的題目,要注意其元素的合理尋求共同特點(diǎn),找出相同點(diǎn)和區(qū)別,即對應(yīng)的范圍問題,難度較大.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          7、判斷如下A與B之間有怎樣的包含或相等關(guān)系:(1)A={x|x=2k-1,k∈Z},B={x|x=2m+1,m∈Z},則A
          =
          B;(2)A={x|x=2m,m∈Z},B={x|x=4m,m∈Z},則A
          ?
          B.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          判斷如下集合A與B之間有怎樣的包含或相等關(guān)系:
          (1)A={x|x=2k-1,k∈Z},B={x|x=2m+1,m∈Z};
          (2)A={x|x=2m,m∈Z},B={x|x=4n,n∈Z}.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          判斷如下A與B之間有怎樣的包含或相等關(guān)系.

          (1)A={x|x=2k-1.k∈Z},B={x|x=2m+1,m∈Z};

          (2)A={x|x=2m.m∈Z},B={x|x=4n,n∈Z}.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          判斷如下集合A與B之間有怎樣的包含或相等關(guān)系:
          (1)A={x|x=2k-1,k∈Z},B={x|x=2m+1,m∈Z};
          (2)A={x|x=2m,m∈Z},B={x|x=4n,n∈Z}.

          查看答案和解析>>

          同步練習(xí)冊答案