(12分) 已知在拋物線
上,
的重心與此拋物線的焦點(diǎn)F重合。
⑴ 寫(xiě)出該拋物線的標(biāo)準(zhǔn)方程和焦點(diǎn)F的坐標(biāo);
⑵ 求線段BC的中點(diǎn)M的坐標(biāo);
⑶ 求BC所在直線的方程。
⑴方程為,焦點(diǎn)F的坐標(biāo)為
⑵
⑶
解析試題分析:⑴ 由點(diǎn)在拋物線
上,有
解得p =16,所以拋物線方程為
,焦點(diǎn)F的坐標(biāo)為
。
⑵ 解法一:由于是
的重心,設(shè)M是BC的中點(diǎn),
所以,即有
設(shè)點(diǎn)M的坐標(biāo)為,所以
解得,所以點(diǎn)M的坐標(biāo)為
解法二:
∵M(jìn)是BC的中點(diǎn),
⑶ ∵點(diǎn)在拋物線上,
,又點(diǎn)
在直線BC上
…12分
考點(diǎn):拋物線方程及拋物線中的中點(diǎn)弦問(wèn)題
點(diǎn)評(píng):圓錐曲線的中點(diǎn)弦問(wèn)題(直線與圓錐曲線相較于兩點(diǎn),涉及到弦的中點(diǎn))采用點(diǎn)差法推理化簡(jiǎn)較容易,計(jì)算量小
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿(mǎn)分12分)已知橢圓的中心在坐標(biāo)原點(diǎn)O,長(zhǎng)軸長(zhǎng)為2,離心率e=
,過(guò)右焦點(diǎn)F的直線l交橢圓于P、Q兩點(diǎn).
(Ⅰ)求橢圓的方程;
(Ⅱ)若OP、OQ為鄰邊的平行四邊形是矩形,求滿(mǎn)足該條件的直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本大題滿(mǎn)分14分)
已知△的兩個(gè)頂點(diǎn)
的坐標(biāo)分別是
,
,且
所在直線的斜率之積等于
.
(Ⅰ)求頂點(diǎn)的軌跡
的方程,并判斷軌跡
為何種圓錐曲線;
(Ⅱ)當(dāng)時(shí),過(guò)點(diǎn)
的直線
交曲線
于
兩點(diǎn),設(shè)點(diǎn)
關(guān)于
軸的對(duì)稱(chēng)點(diǎn)為
(
不重合).求證直線
與
軸的交點(diǎn)為定點(diǎn),并求出該定點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿(mǎn)分12分)
設(shè)雙曲線的方程為
,
、
為其左、右兩個(gè)頂點(diǎn),
是雙曲線
上的任意一點(diǎn),作
,
,垂足分別為
、
,
與
交于點(diǎn)
.
(1)求點(diǎn)的軌跡
方程;
(2)設(shè)、
的離心率分別為
、
,當(dāng)
時(shí),求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿(mǎn)分12分)
拋物線的焦點(diǎn)與雙曲線
的右焦點(diǎn)重合.
(Ⅰ)求拋物線的方程;
(Ⅱ)求拋物線的準(zhǔn)線與雙曲線的漸近線圍成的三角形的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿(mǎn)分12分)
雙曲線與雙曲線
有共同的漸近線,且經(jīng)過(guò)點(diǎn)
,橢圓
以雙曲線
的焦點(diǎn)為焦點(diǎn)且橢圓上的點(diǎn)與焦點(diǎn)的最短距離為
,求雙曲線
和橢圓
的方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題滿(mǎn)分15分)
已知點(diǎn),
是拋物線
上相異兩點(diǎn),且滿(mǎn)足
.
(Ⅰ)若的中垂線經(jīng)過(guò)點(diǎn)
,求直線
的方程;
(Ⅱ)若的中垂線交
軸于點(diǎn)
,求
的面積的最大值及此時(shí)直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿(mǎn)分14分)已知中心在坐標(biāo)原點(diǎn)O,焦點(diǎn)在軸上,長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的2倍的橢圓經(jīng)過(guò)點(diǎn)M(2,1)
(Ⅰ)求橢圓的方程;
(Ⅱ)直線平行于
,且與橢圓交于A、B兩個(gè)不同點(diǎn).
(ⅰ)若為鈍角,求直線
在
軸上的截距m的取值范圍;
(ⅱ)求證直線MA、MB與x軸圍成的三角形總是等腰三角形.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿(mǎn)分12分)
已知橢圓的左、右焦點(diǎn)分別為
,離心率
,
.
(I)求橢圓的標(biāo)準(zhǔn)方程;
(II)過(guò)點(diǎn)的直線
與該橢圓交于
兩點(diǎn),且
,求直線
的方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com