日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 在△ABC中,角A,B,C所對的邊分別為a,b,c,∠B=30°,c=6,記b=f(a),若函數(shù)g(a)=f(a)-k(k是常數(shù))只有一個零點,則實數(shù)k的取值范圍是( 。
          分析:由余弦定理可得 b=f(a)的解析式,利用二次函數(shù)的性質(zhì)可得f(a)的最小值為3,f(a)的增區(qū)間為[3
          3
          ,+∞),
          減區(qū)間為(0,3
          3
          ),且f(0)趨于6,由此可得實數(shù)k的取值范圍.
          解答:解:在△ABC中,∠B=30°,c=6,記b=f(a),
          而由余弦定理可得 b=
          a2+c2-2ac•cosB
          =
          a2+36-12a•
          3
          2
           
          =
          (a-3
          3
          )
          2
          +9
          ≥3,即f(a)的最小值為3.
          由于函數(shù)g(a)=f(a)-k(k是常數(shù))只有一個零點,故方函數(shù)y=f(a)與直線y=k有唯一交點,
          由于函數(shù)f(a)的增區(qū)間為[3
          3
          ,+∞),減區(qū)間為(0,3
          3
          ),且f(0)趨于6,
          結(jié)合函數(shù)b=f(a)的圖象可得 k≥6,或k=3,
          故選D.
          點評:本題主要考查函數(shù)的零點與方程的根的關(guān)系,二次函數(shù)的性質(zhì)應(yīng)用,體現(xiàn)了轉(zhuǎn)化的數(shù)學(xué)思想,屬于基礎(chǔ)題.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          在△ABC中,角A、B、C所對的邊分別為a,b,c,若b2+c2-a2=
          3
          bc
          ,且b=
          3
          a
          ,則下列關(guān)系一定不成立的是(  )
          A、a=c
          B、b=c
          C、2a=c
          D、a2+b2=c2

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          在△ABC中,角A,B,C的對邊分別為a,b,c,已知B=60°,cos(B+C)=-
          1114

          (1)求cosC的值;
          (2)若bcosC+acosB=5,求△ABC的面積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          在△ABC中,角A,B,C的對邊分別是a,b,c,且bsinA=
          3
          acosB

          (1)求角B的大;
          (2)若a=4,c=3,D為BC的中點,求△ABC的面積及AD的長度.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          在△ABC中,角A、B、C所對的邊分別為a、b、c并且滿足
          b
          a
          =
          sinB
          cosA

          (1)求∠A的值;
          (2)求用角B表示
          2
          sinB-cosC
          ,并求它的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          在△ABC中,角A,B,C所對邊的長分別為a,b,c,且a=
          5
          ,b=3,sinC=2sinA
          ,則sinA=
           

          查看答案和解析>>

          同步練習(xí)冊答案