日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,在三棱錐中,平面平面,均是等腰直角三角形,,,、分別為、的中點(diǎn).

          )求證:平面;

          )求證:

          )求直線與平面所成角的正弦值.

          【答案】)證明見解析;()證明見解析;(.

          【解析】

          )由中位線的性質(zhì)得出,然后利用直線與平面平行的判定定理可證明出平面;

          )由已知條件可知,然后利用面面垂直的性質(zhì)定理可證明出平面,即可得出;

          )以為原點(diǎn),、所在直線分別為軸、軸建立空間直角坐標(biāo)系,利用空間向量法求出直線與平面所成角的正弦值.

          )在中,、分別為的中點(diǎn),所以為中位線,所以.

          又因?yàn)?/span>平面,平面,所以平面;

          )在等腰直角三角形中,,所以.

          因?yàn)槠矫?/span>平面,平面平面, 平面,

          所以平面.

          又因?yàn)?/span>平面,所以

          )在平面內(nèi)過(guò)點(diǎn)垂直于,由()知,平面,

          因?yàn)?/span>平面,所以.

          如圖,以為原點(diǎn)建立空間直角坐標(biāo)系.

          ,,.

          ,,.

          設(shè)平面的法向量為,則,即.

          ,,所以.

          直線與平面所成角大小為.

          所以直線與平面所成角的正弦值為.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在三棱錐ABCD中,點(diǎn)EBD上,EAEBECEDBDCD,△ACD為正三角形,點(diǎn)M,N分別在AECD上運(yùn)動(dòng)(不含端點(diǎn)),且AMCN,則當(dāng)四面體CEMN的體積取得最大值時(shí),三棱錐ABCD的外接球的表面積為_____.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知拋物線的焦點(diǎn)為橢圓的右焦點(diǎn),C的準(zhǔn)線與E交于P,Q兩點(diǎn),且

          1)求E的方程;

          2)過(guò)E的左頂點(diǎn)A作直線lE于另一點(diǎn)B,且BOO為坐標(biāo)原點(diǎn))的延長(zhǎng)線交E于點(diǎn)M,若直線AM的斜率為1,求l的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】某校團(tuán)委對(duì)“學(xué)生性別與中學(xué)生追星是否有關(guān)”作了一次調(diào)查,利用列聯(lián)表,由計(jì)算得,參照下表:

          0.01

          0.05

          0.025

          0.010

          0.005

          0.001

          2.706

          3.841

          5.024

          6.635

          7.879

          10.828

          得到正確結(jié)論是( )

          A. 有99%以上的把握認(rèn)為“學(xué)生性別與中學(xué)生追星無(wú)關(guān)”

          B. 有99%以上的把握認(rèn)為“學(xué)生性別與中學(xué)生追星有關(guān)”

          C. 在犯錯(cuò)誤的概率不超過(guò)0.5%的前提下,認(rèn)為“學(xué)生性別與中學(xué)生追星無(wú)關(guān)”

          D. 在犯錯(cuò)誤的概率不超過(guò)0.5%的前提下,認(rèn)為“學(xué)生性別與中學(xué)生追星有關(guān)”

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知是橢圓的左右焦點(diǎn),橢圓與軸正半軸交于點(diǎn),直線的斜率為,且到直線的距離為

          1)求橢圓的方程;

          2為橢圓上任意一點(diǎn),過(guò)分別作直線,,且相交于軸上方一點(diǎn),當(dāng)時(shí),求,兩點(diǎn)間距離的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】我國(guó)古代勞動(dòng)人民在筑城、筑堤、挖溝、挖渠、建倉(cāng)、建囤等工程中,積累了豐富的經(jīng)驗(yàn),總結(jié)出了一套有關(guān)體積、容積計(jì)算的方法,這些方法以實(shí)際問(wèn)題的形式被收入我國(guó)古代數(shù)學(xué)名著《九章算術(shù)》中.《九章算術(shù)》將底面為長(zhǎng)方形且有一條側(cè)棱與底面垂直的四棱錐稱之為陽(yáng)馬,如圖所示的陽(yáng)馬三視圖,則它的體積為(

          A.B.1C.2D.3

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù)fx)=exx+12,令f1x)=f'(x),fn+1x)=fn'(x),若fnx)=exanx2+bnx+cn),記數(shù)列{}的前n項(xiàng)和為Sn,則下列選項(xiàng)中與S2019的值最接近的是( )

          A.B.C.D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖所示,所在平面互相垂直,且,,,分別為,的中點(diǎn).

          (1)求證:

          (2)求二面角的正弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,平面四邊形中,E,F,中點(diǎn),,,,將沿對(duì)角線折起至,使平面平面,則四面體中,下列結(jié)論不正確的是(

          A.平面B.異面直線所成的角為90°

          C.異面直線所成的角為60°D.直線與平面所成的角為30°

          查看答案和解析>>

          同步練習(xí)冊(cè)答案