日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (2013•中山一模)已知函數(shù)f(x)=
          13
          x3-ax+b
          ,其中實數(shù)a,b是常數(shù).
          (Ⅰ)已知a∈{0,1,2},b∈{0,1,2},求事件A:“f(1)≥0”發(fā)生的概率;
          (Ⅱ)若f(x)是R上的奇函數(shù),g(a)是f(x)在區(qū)間[-1,1]上的最小值,求當|a|≥1時g(a)的解析式;
          (Ⅲ)記y=f(x)的導函數(shù)為f′(x),則當a=1時,對任意x1∈[0,2],總存在x2∈[0,2]使得f(x1)=f′(x2),求實數(shù)b的取值范圍.
          分析:(I)由已知可得基本事件的總數(shù)為9個;再分類討論得出事件A包含的基本事件的個數(shù),利用古典概型的概率計算公式即可得出.
          (II)利用奇函數(shù)的性質(zhì)f(0)=0即可得出b=0;利用導數(shù)即可得出函數(shù)f(x)的單調(diào)性,從而得出其最小值g(a).
          (III)利用導數(shù)和二次函數(shù)的單調(diào)性即可求出函數(shù)f(x)及f(x)在給出的區(qū)間上的值域,而對任意x1∈[0,2],總存在x2∈[0,2]使得f(x1)=f'(x2)?f(x)的值域⊆f(x)的值域,解出即可.
          解答:解:(Ⅰ)由已知a∈{0,1,2},b∈{0,1,2},可知:共有3×3=9個函數(shù),即基本事件的總數(shù)為9個.
          若f(1)≥0,得到
          1
          3
          -a+b≥0
          ,即a≤b+
          1
          3
          :①當a=0時,b=0,1,2都滿足;②當a=1時,b=1,2滿足;③當a=2時,b=2滿足.
          故滿足:“f(1)≥0”的事件A包括6個基本事件,故P(A)=
          6
          9
          =
          2
          3

          (II)∵f(x)是R上的奇函數(shù),∴f(0)=0=b,
          f(x)=
          1
          3
          x3-ax
          ,f(x)=x2-a.
          ①當a≤-1時,f(x)≥0,∴函數(shù)f(x)在區(qū)間[-1,1]上單調(diào)遞增,∴g(a)=f(-1)=-
          1
          3
          +a
          ;
          ②當a≥1時,∵x∈[-1,1],∴f(x)=x2-a≤0,
          ∴函數(shù)f(x)在區(qū)間[-1,1]上單調(diào)遞減,∴g(a)=f(1)=
          1
          3
          -a

          (Ⅲ)當a=1時,f(x)=
          1
          3
          x3-x+b
          ,∴f(x)=x2-1,當x∈(0,1]時,f(x)<0;當x∈(1,2]時,f(x)>0.
          ∴f(x)在(0,1)上單調(diào)遞減;在(1,2)上單調(diào)遞增,即f(x)min=f(1)=-
          2
          3
          +b

          又∵f(0)=b,f(2)=
          2
          3
          +b>f(0)
          ,當x∈[0,2]時,f(x)∈[-
          2
          3
          +b,
          2
          3
          +b]

          而f(x)=x2-1在[0,2]上單調(diào)遞增,f'(x)∈[-1,3],
          且 對任意x1∈[0,2],總存在x2∈[0,2]使得f(x1)=f'(x2),
          ∴f(x)的值域⊆f(x)的值域,即[-
          2
          3
          +b,
          2
          3
          +b]⊆[-1,3]

          -
          2
          3
          +b≥-1
          2
          3
          +b≤3
          ,解得-
          1
          3
          ≤b≤
          7
          3
          點評:本題綜合考查了利用導數(shù)研究函數(shù)的單調(diào)性、極值、最值等性質(zhì),古典概型的概率計算公式,即等價轉(zhuǎn)化方法、分類討論方法.
          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:

          (2013•中山一模)若命題“存在實數(shù)x,使x2+ax+1<0”的否定是假命題,則實數(shù)a的取值范圍為
          a<-2或a>2
          a<-2或a>2

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          (2013•中山一模)函數(shù)f(x)=2sin(ωx+φ)(ω>0,0<φ<
          π
          2
          )
          的部分圖象如下圖所示,該圖象與y軸交于點F(0,1),與x軸交于點B,C,M為最高點,且三角形MBC的面積為π.
          (Ⅰ)求函數(shù)f(x)的解析式;
          (Ⅱ)若f(α-
          π
          6
          )=
          2
          5
          5
          ,α∈(0,
          π
          2
          )
          ,求cos(2α+
          π
          4
          )
          的值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          (2013•中山一模)已知等差數(shù)列{an}中,a2=3,a4+a6=18.
          (Ⅰ)求數(shù)列{an}的通項公式;
          (Ⅱ)若數(shù)列{bn}滿足:bn+1=2bn,并且b1=a5,試求數(shù)列{bn}的前n項和Sn

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          (2013•中山一模)某書商為提高某套叢書的銷量,準備舉辦一場展銷會.據(jù)市場調(diào)查,當每套叢書售價定為x元時,銷售量可達到15一O.1x萬套.現(xiàn)出版社為配合該書商的活動,決定進行價格改革,將每套叢書的供貨價格分成固定價格和浮動價格兩部分,其中固定價格為30元,浮動價格(單位:元)與銷售量(單位:萬套)成反比,比例系數(shù)為l0.假設不計其它成本,即銷售每套叢書的利潤=售價 一 供貨價格.問:
          (I)每套叢書定價為100元時,書商能獲得的總利潤是多少萬元?
          (Ⅱ)每套叢書定價為多少元時,單套叢書的利潤最大?

          查看答案和解析>>

          同步練習冊答案