日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù)f(x)=ax3+bx2+cx+d(a≠0)的對(duì)稱中心為M(x0,y0),記函數(shù)f(x)的導(dǎo)函數(shù)為f′(x),f′(x)的導(dǎo)函數(shù)為f″(x),則有f″(x0)=0.若函數(shù)f(x)=x3-3x2,則可求得f(
          1
          2013
          )+f(
          2
          2013
          )+…f(
          4024
          2013
          )+f(
          4025
          2013
          )
          =( 。
          分析:由題意對(duì)已知函數(shù)求兩次導(dǎo)數(shù)可得圖象關(guān)于點(diǎn)(1,-2)對(duì)稱,即f(x)+f(2-x)=-4,而要求的式子可用倒序相加法求解,共有2011對(duì)-4和一個(gè)f(1)=-2,可得答案.
          解答:解:由題意f(x)=x3-3x2,則f′(x)=3x2-6x,f″(x)=6x-6,
          由f″(x0)=0得x0=1,而f(1)=-2,故函數(shù)f(x)=x3-3x2關(guān)于點(diǎn)(1,-2)對(duì)稱,即f(x)+f(2-x)=-4.
          所以f(
          1
          2013
          )+f(
          4025
          2013
          )=-4
          ,…f(
          2012
          2013
          )+f(
          2014
          2013
          )=-4
          ,f(
          2013
          2013
          )=f(1)=-2

          所以f(
          1
          2013
          )+f(
          2
          2013
          )+…f(
          4024
          2013
          )+f(
          4025
          2013
          )
          =-4×2012+(-2)=-8050,
          故選D.
          點(diǎn)評(píng):本題主要考查導(dǎo)數(shù)的基本運(yùn)算,利用條件求出函數(shù)的對(duì)稱中心是解決本題的關(guān)鍵.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=
          a-x2
          x
          +lnx  (a∈R , x∈[
          1
          2
           , 2])

          (1)當(dāng)a∈[-2,
          1
          4
          )
          時(shí),求f(x)的最大值;
          (2)設(shè)g(x)=[f(x)-lnx]•x2,k是g(x)圖象上不同兩點(diǎn)的連線的斜率,否存在實(shí)數(shù)a,使得k≤1恒成立?若存在,求a的取值范圍;若不存在,請(qǐng)說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          (2009•海淀區(qū)二模)已知函數(shù)f(x)=a-2x的圖象過原點(diǎn),則不等式f(x)>
          34
          的解集為
          (-∞,-2)
          (-∞,-2)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=a|x|的圖象經(jīng)過點(diǎn)(1,3),解不等式f(
          2x
          )>3

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=a•2x+b•3x,其中常數(shù)a,b滿足a•b≠0
          (1)若a•b>0,判斷函數(shù)f(x)的單調(diào)性;
          (2)若a=-3b,求f(x+1)>f(x)時(shí)的x的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知函數(shù)f(x)=a-2|x|+1(a≠0),定義函數(shù)F(x)=
          f(x)   ,  x>0
          -f(x) ,    x<0
           給出下列命題:①F(x)=|f(x)|; ②函數(shù)F(x)是奇函數(shù);③當(dāng)a<0時(shí),若mn<0,m+n>0,總有F(m)+F(n)<0成立,其中所有正確命題的序號(hào)是
           

          查看答案和解析>>

          同步練習(xí)冊(cè)答案