【題目】已知圓:
和點(diǎn)
,動(dòng)圓
經(jīng)過點(diǎn)
且與圓
相切,圓心
的軌跡為曲線
.
(1)求曲線的方程;
(2)點(diǎn)是曲線
與
軸正半軸的交點(diǎn),點(diǎn)
,
在曲線
上,若直線
,
的斜率分別是
,
,滿足
,求
面積的最大值.
【答案】(1);(2)
.
【解析】試題分析:(1)分析條件可得圓心滿足條件
>
,從而可得曲線E是M,N為焦點(diǎn),長(zhǎng)軸長(zhǎng)為
的橢圓,可得橢圓的方程;(2)設(shè)直線
的方程為
,代入橢圓方程消去x整理得到關(guān)于y的方程,進(jìn)一步可得
,由
可求得
,從而
,從而
可得
,從而可得三角形面積的最大值。
試題解析:
(1)由題意得圓的圓心為
,半徑為
,
點(diǎn)在圓
內(nèi),因?yàn)閯?dòng)圓
經(jīng)過點(diǎn)
且與圓
相切,所以動(dòng)圓
與圓
內(nèi)切。
設(shè)動(dòng)圓半徑為
,則
.
因?yàn)閯?dòng)圓經(jīng)過點(diǎn)
,所以
,
>
,
所以曲線E是M,N為焦點(diǎn),長(zhǎng)軸長(zhǎng)為的橢圓.
設(shè)橢圓的方程為
則,
∴,
∴曲線的方程為
.
(2)當(dāng)直線的斜率為0時(shí),不合題意;
設(shè)直線的方程為
,
由消去x整理得
,
設(shè),
則,
由條件得點(diǎn)A坐標(biāo)為(1,0),
∵,
∴
=.且
,
∴,
解得,
故直線BC過定點(diǎn)(2,0),
由,解得
,
∴
,當(dāng)且僅當(dāng)
時(shí)取等號(hào)。
綜上面積的最大值為
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】莫數(shù)學(xué)建模興趣小組測(cè)量某移動(dòng)信號(hào)塔的高度
(單位:
),如圖所示,垂直放置的標(biāo)桿
的高度
,仰角
,
.
(Ⅰ)該小組已經(jīng)測(cè)得一組的值,
,
,請(qǐng)推測(cè)
的值;
(Ⅱ)該小組對(duì)測(cè)得的多組數(shù)據(jù)分析后,發(fā)現(xiàn)適當(dāng)調(diào)節(jié)標(biāo)桿到信號(hào)塔的距離(單位:
),使得
較大時(shí),可以提高信號(hào)塔測(cè)量的精確度,若信號(hào)塔高度為
,試問
為多大時(shí),
最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2+2ax+2,
(1)求實(shí)數(shù)a的取值范圍,使函數(shù)y=f(x)在區(qū)間[﹣5,5]上是單調(diào)函數(shù);
(2)若x∈[﹣5,5],記y=f(x)的最大值為g(a),求g(a)的表達(dá)式并判斷其奇偶性.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)直線:
(
)與橢圓
相交于
,
兩個(gè)不同的點(diǎn),與
軸相交于點(diǎn)
,記
為坐標(biāo)原點(diǎn).
(1)證明:;
(2)若,求
的面積取得最大值時(shí)的橢圓方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)= +
的定義域?yàn)椋?/span> )
A.[﹣2,0)∪(0,2]
B.(﹣1,0)∪(0,2]
C.[﹣2,2]
D.(﹣1,2]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)a是實(shí)數(shù),f(x)=a﹣ (x∈R).
(1)證明不論a為何實(shí)數(shù),f(x)均為增函數(shù);
(2)若f(x)滿足f(﹣x)+f(x)=0,解關(guān)于x的不等式f(x+1)+f(1﹣2x)>0.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在極坐標(biāo)系中,點(diǎn) 的極坐標(biāo)是
,曲線
的極坐標(biāo)方程為
.以極點(diǎn)為坐標(biāo)原點(diǎn),極軸為
軸的正半軸建立平面直角坐標(biāo)系,斜率為
的直線
經(jīng)過點(diǎn)
.
(1)寫出直線 的參數(shù)方程和曲線
的直角坐標(biāo)方程;
(2)若直線 和曲線
相交于兩點(diǎn)
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的右焦點(diǎn)為
,點(diǎn)
在橢圓上.
(1)求橢圓的方程;
(2)過點(diǎn)的直線
,交橢圓
于
兩點(diǎn),點(diǎn)
在橢圓
上,坐標(biāo)原點(diǎn)
恰為
的重心,求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了普及環(huán)保知識(shí),增強(qiáng)環(huán)保意識(shí),某校從理科甲班抽取60人,從文科乙班抽取50人參加環(huán)保知識(shí)測(cè)試.
優(yōu)秀人數(shù) | 非優(yōu)秀人數(shù) | 總計(jì) | |
甲班 | |||
乙班 | 30 | ||
總計(jì) | 60 |
(Ⅰ)根據(jù)題目完成列聯(lián)表,并據(jù)此判斷是否有
的把握認(rèn)為環(huán)保知識(shí)成績(jī)優(yōu)秀與學(xué)生的文理分類有關(guān).
(Ⅱ)現(xiàn)已知,
,
三人獲得優(yōu)秀的概率分別為
,
,
,設(shè)隨機(jī)變量
表示
,
,
三人中獲得優(yōu)秀的人數(shù),求
的分布列及期望
.
附: ,
0.100 | 0.050 | 0.025 | 0.010 | 0.005 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com