日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知圓 和點(diǎn),動(dòng)圓經(jīng)過點(diǎn)且與圓相切,圓心的軌跡為曲線

          (1)求曲線的方程;

          (2)點(diǎn)是曲線軸正半軸的交點(diǎn),點(diǎn) 在曲線上,若直線, 的斜率分別是, ,滿足,求面積的最大值.

          【答案】(1);(2).

          【解析】試題分析:(1)分析條件可得圓心滿足條件>,從而可得曲線EM,N為焦點(diǎn),長(zhǎng)軸長(zhǎng)為的橢圓,可得橢圓的方程;(2)設(shè)直線的方程為,代入橢圓方程消去x整理得到關(guān)于y的方程,進(jìn)一步可得

          ,由可求得,從而,從而

          可得 ,從而可得三角形面積的最大值。

          試題解析:

          1)由題意得圓的圓心為,半徑為,

          點(diǎn)在圓內(nèi),因?yàn)閯?dòng)圓經(jīng)過點(diǎn)且與圓相切,所以動(dòng)圓與圓內(nèi)切。

          設(shè)動(dòng)圓半徑為,則 .

          因?yàn)閯?dòng)圓經(jīng)過點(diǎn),所以, >,

          所以曲線EM,N為焦點(diǎn),長(zhǎng)軸長(zhǎng)為的橢圓.

          設(shè)橢圓的方程為

          ,

          ∴曲線的方程為

          (2)當(dāng)直線的斜率為0時(shí),不合題意;

          設(shè)直線的方程為,

          消去x整理得,

          設(shè)

          ,

          由條件得點(diǎn)A坐標(biāo)為(1,0),

          ,

          =.,

          解得,

          故直線BC過定點(diǎn)(2,0),

          ,解得

          ,當(dāng)且僅當(dāng)時(shí)取等號(hào)。

          綜上面積的最大值為.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】莫數(shù)學(xué)建模興趣小組測(cè)量某移動(dòng)信號(hào)塔的高度(單位: ),如圖所示,垂直放置的標(biāo)桿的高度,仰角 .

          (Ⅰ)該小組已經(jīng)測(cè)得一組的值, ,請(qǐng)推測(cè)的值;

          (Ⅱ)該小組對(duì)測(cè)得的多組數(shù)據(jù)分析后,發(fā)現(xiàn)適當(dāng)調(diào)節(jié)標(biāo)桿到信號(hào)塔的距離(單位: ),使得較大時(shí),可以提高信號(hào)塔測(cè)量的精確度,若信號(hào)塔高度為,試問為多大時(shí), 最大?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)f(x)=x2+2ax+2,
          (1)求實(shí)數(shù)a的取值范圍,使函數(shù)y=f(x)在區(qū)間[﹣5,5]上是單調(diào)函數(shù);
          (2)若x∈[﹣5,5],記y=f(x)的最大值為g(a),求g(a)的表達(dá)式并判斷其奇偶性.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)直線)與橢圓相交于,兩個(gè)不同的點(diǎn),與軸相交于點(diǎn),記為坐標(biāo)原點(diǎn).

          (1)證明:

          (2)若,求的面積取得最大值時(shí)的橢圓方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】函數(shù)f(x)= + 的定義域?yàn)椋?/span>
          A.[﹣2,0)∪(0,2]
          B.(﹣1,0)∪(0,2]
          C.[﹣2,2]
          D.(﹣1,2]

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)a是實(shí)數(shù),f(x)=a﹣ (x∈R).
          (1)證明不論a為何實(shí)數(shù),f(x)均為增函數(shù);
          (2)若f(x)滿足f(﹣x)+f(x)=0,解關(guān)于x的不等式f(x+1)+f(1﹣2x)>0.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】選修4-4:坐標(biāo)系與參數(shù)方程

          在極坐標(biāo)系中,點(diǎn) 的極坐標(biāo)是,曲線 的極坐標(biāo)方程為.以極點(diǎn)為坐標(biāo)原點(diǎn),極軸為 軸的正半軸建立平面直角坐標(biāo)系,斜率為 的直線 經(jīng)過點(diǎn).

          (1)寫出直線 的參數(shù)方程和曲線 的直角坐標(biāo)方程;

          (2)若直線 和曲線相交于兩點(diǎn),求的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓的右焦點(diǎn)為,點(diǎn)在橢圓上.

          1求橢圓的方程;

          2過點(diǎn)的直線,交橢圓兩點(diǎn),點(diǎn)在橢圓上,坐標(biāo)原點(diǎn)恰為的重心,求直線的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】為了普及環(huán)保知識(shí),增強(qiáng)環(huán)保意識(shí),某校從理科甲班抽取60人,從文科乙班抽取50人參加環(huán)保知識(shí)測(cè)試.

          優(yōu)秀人數(shù)

          非優(yōu)秀人數(shù)

          總計(jì)

          甲班

          乙班

          30

          總計(jì)

          60

          (Ⅰ)根據(jù)題目完成列聯(lián)表,并據(jù)此判斷是否有的把握認(rèn)為環(huán)保知識(shí)成績(jī)優(yōu)秀與學(xué)生的文理分類有關(guān).

          (Ⅱ)現(xiàn)已知, 三人獲得優(yōu)秀的概率分別為, , ,設(shè)隨機(jī)變量表示 , 三人中獲得優(yōu)秀的人數(shù),求的分布列及期望

          附: ,

          0.100

          0.050

          0.025

          0.010

          0.005

          2.706

          3.841

          5.024

          6.635

          7.879

          查看答案和解析>>

          同步練習(xí)冊(cè)答案