日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (1)設(shè)點的極坐標(biāo)為,直線過點且與極軸垂直,則直線的極坐標(biāo)方程為         。
          (2)已知函數(shù),若關(guān)于的不等式的解集為,則的取值范圍是     .
          (1)             (2)

          試題分析::如圖所示,設(shè)B為直線l上的任意一點,在Rt△0BC中,cosθ= ,據(jù)此即可求出直線l的方程.如圖所示,設(shè)B為直線l上的任意一點,在Rt△0BC中,cosθ=,∴ρcosθ=2,即為直線l的極坐標(biāo)方程.

          (2)根據(jù)題意,由于函數(shù),若關(guān)于的不等式的解集為,則可知:|2x+1|+|x+2|-m 恒成立可知(|2x+1|+|x+2|-m)的最小值大于等于2即可,那么結(jié)合分段函數(shù) 最值可知
          點評:本題考查了極坐標(biāo)方程,把ρ與θ放在一個直角三角形中是常用的方法.考查絕對值不等式的應(yīng)用問題,題中涉及到分類討論的思想,考查學(xué)生的靈活應(yīng)用能力,屬于中檔題目.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

          (坐標(biāo)系與參數(shù)方程選做題)若直線與圓為參數(shù))沒有公共點,則實數(shù)的取值范圍是                     ;

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          在極坐標(biāo)系中,圓的極坐標(biāo)方程為.現(xiàn)以極點為原點,極軸為軸的非負(fù)半軸建立平面直角坐標(biāo)系.
          (Ⅰ)求圓的直角坐標(biāo)方程;
          (Ⅱ)若圓上的動點的直角坐標(biāo)為,求的最大值,并寫出取得最大值時點P的直角坐標(biāo).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

          下列極坐標(biāo)方程表示圓的是(    )
          A.B.
          C.D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          在直角坐標(biāo)系中以為極點,軸正半軸為極軸建立坐標(biāo)系.圓,直線的極坐標(biāo)方程分別為.
          (1)
          (2)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          在平面直角坐標(biāo)系中,曲線為參數(shù))。在以為原點,軸正半軸為極軸的極坐標(biāo)系中,曲線的極坐標(biāo)方程為,射線為,與的交點為,與除極點外的一個交點為。當(dāng)時,
          (1)求,的直角坐標(biāo)方程;
          (2)設(shè)軸正半軸交點為,當(dāng)時,設(shè)直線與曲線的另一個交點為,求。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

          (坐標(biāo)系與參數(shù)方程選做題)已知直線的極坐標(biāo)方程為 ,則極點到這條直線的距離是     .

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

          (本小題滿分10分)求直線截得的弦長.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

          在極坐標(biāo)系中,點到圓ρ=2cosθ的圓心的距離為

          查看答案和解析>>

          同步練習(xí)冊答案