【題目】已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)的圖象在點
處的切線的斜率為1,問:
在什么范圍取值時,對于任意的
,函數(shù)
在區(qū)間
上總存在極值?
【答案】(1)當(dāng)時,函數(shù)
的單調(diào)增區(qū)間是
,單調(diào)減區(qū)間是
;當(dāng)
時,函數(shù)
的單調(diào)增區(qū)間是
,單調(diào)減區(qū)間是
;(2)
.
【解析】
(1)利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間的步驟是①求導(dǎo)函數(shù);②解
(或<0);③得到函數(shù)的增區(qū)間(或減區(qū)間),
(2)點處的切線的斜率為1,即
,可求
值,代入得
的解析式,由
,且
在區(qū)間
上總不是單調(diào)函數(shù)可知:g′(1)<0,g′(2)<0,g′(3)>0,于是可求m的范圍.
(1)由知:
當(dāng)時,函數(shù)
的單調(diào)增區(qū)間是
,單調(diào)減區(qū)間是
;
當(dāng)時,函數(shù)
的單調(diào)增區(qū)間是
,單調(diào)減區(qū)間是
;
(2)由得
,
.
,
∵函數(shù)在區(qū)間
上總存在極值,
∴有兩個不等實根且至少有一個在區(qū)間
內(nèi)
又∵函數(shù)是開口向上的二次函數(shù),且
,
由得
,
在
上單調(diào)遞減,
所以;
,
由,解得
;
綜上得:所以當(dāng)m在
內(nèi)取值時,對于任意
,函數(shù)
,在區(qū)間
上總存在極值.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=(x﹣1)ex+ax2(a∈R).
(1)討論函數(shù)f(x)的單調(diào)性;
(2)若函數(shù)f(x)有兩個零點x1,x2(x1<x2),證明:x1+x2<0.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓的右焦點為
,過
的直線
與
相交于
兩點.
(1)若,求
的方程;
(2)設(shè)過點作
軸的垂線交
于另一點
,若
是
的外心,證明:
為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直三棱柱中,
,
,
,點E,F分別在
,
,且
,
.設(shè)
.
(1)當(dāng)時,求異面直線
與
所成角的大。
(2)當(dāng)平面平面
時,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某客戶考察了一款熱銷的凈水器,使用壽命為十年,改款凈水器為三級過濾,每一級過濾都由核心部件濾芯來實現(xiàn).在使用過程中,一級濾芯需要不定期更換,其中每更換個一級濾芯就需要更換
個二級濾芯,三級濾芯無需更換.其中一級濾芯每個
元,二級濾芯每個
元.記一臺凈水器在使用期內(nèi)需要更換的二級濾芯的個數(shù)構(gòu)成的集合為
.如圖是根據(jù)
臺該款凈水器在十年使用期內(nèi)更換的一級濾芯的個數(shù)制成的柱狀圖.
(1)結(jié)合圖,寫出集合;
(2)根據(jù)以上信息,求出一臺凈水器在使用期內(nèi)更換二級濾芯的費用大于元的概率(以
臺凈水器更換二級濾芯的頻率代替
臺凈水器更換二級濾芯發(fā)生的概率);
(3)若在購買凈水器的同時購買濾芯,則濾芯可享受折優(yōu)惠(使用過程中如需再購買無優(yōu)惠).假設(shè)上述
臺凈水器在購機(jī)的同時,每臺均購買
個一級濾芯、
個二級濾芯作為備用濾芯(其中
,
),計算這
臺凈水器在使用期內(nèi)購買濾芯所需總費用的平均數(shù).并以此作為決策依據(jù),如果客戶購買凈水器的同時購買備用濾芯的總數(shù)也為
個,則其中一級濾芯和二級濾芯的個數(shù)應(yīng)分別是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為
(
為參數(shù)).以坐標(biāo)原點為極點,
軸正半軸為極軸,建立極坐標(biāo)系,曲線
的極坐標(biāo)方程為
.
(1)寫出的普通方程及
的直角坐標(biāo)方程;
(2)設(shè)點在
上,點
在
上,求
的最小值及此時點
的直角坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解某校學(xué)生參加社區(qū)服務(wù)的情況,采用按性別分層抽樣的方法進(jìn)行調(diào)查.已知該校共有學(xué)生960人,其中男生560人,從全校學(xué)生中抽取了容量為n的樣本,得到一周參加社區(qū)服務(wù)時間的統(tǒng)計數(shù)據(jù)如下:
超過1小時 | 不超過1小時 | |
男 | 20 | 8 |
女 | 12 | m |
(1)求m,n;
(2)能否有95%的把握認(rèn)為該校學(xué)生一周參加社區(qū)服務(wù)時間是否超過1小時與性別有關(guān)?
附:
P(K2≥k) | 0.050 | 0.010 | 0.001 |
k | 3.841 | 6.635 | 10.828 |
K2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已如橢圓E:(
)的離心率為
,點
在E上.
(1)求E的方程:
(2)斜率不為0的直線l經(jīng)過點,且與E交于P,Q兩點,試問:是否存在定點C,使得
?若存在,求C的坐標(biāo):若不存在,請說明理由
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com