日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 精英家教網 > 高中數學 > 題目詳情

          已知函數是定義在上的奇函數,當時, (其中e是自然界對數的底,)

          (Ⅰ)設,求證:當時,;

          (Ⅱ)是否存在實數a,使得當時,的最小值是3 ?如果存在,求出實數a的值;如果不存在,請說明理由。

           

          【答案】

          (Ⅰ)設,則,所以

          又因為是定義在上的奇函數,所以 

          故函數的解析式為       …………………3分

          證明:當

          時,,設

          因為,所以當時,,此時單調遞減;當時,,此時單調遞增,所以

            又因為,所以當時,,此時單調遞減,所以

          所以當時,       ……………………6分

          (Ⅱ)解:假設存在實數,使得當時,有最小值是3,則

          (。┊時,在區(qū)間上單調遞增,,不滿足最小值是3

          (ⅱ)當時,在區(qū)間上單調遞增,,也不滿足最小值是3

          (ⅲ)當,由于,則,故函數 是上的增函數.

          所以,解得(舍去)

          (ⅳ)當時,則

          時,,此時函數是減函數;

          時,,此時函數是增函數.

          所以,解得

          綜上可知,存在實數,使得當時,有最小值3

          【解析】(Ⅰ),設,證明,(Ⅱ)的最小值是3,討論a的值對函數最小值的影響。

           

          練習冊系列答案
          相關習題

          科目:高中數學 來源:2015屆廣西柳州鐵路一中高一上學期第一次月考數學試卷(解析版) 題型:解答題

          已知函數是定義在上的奇函數,且。

          (1)求函數的解析式;

          (2)用單調性的定義證明上是增函數;

          (3)解不等式。

           

          查看答案和解析>>

          科目:高中數學 來源:2015屆遼寧省本溪市高一上學期第一次月考數學試卷(解析版) 題型:解答題

          (12分)已知函數是定義在上的奇函數,且,

          (1)確定函數的解析式;

          (2)用定義證明在(-1 ,1)上是增函數;

          (3)解不等式

           

          查看答案和解析>>

          科目:高中數學 來源:2013屆廣東省高二下期中文科數學試卷(解析版) 題型:選擇題

          已知函數是定義在上的以5為周期的奇函數, 若,

            ,則a的取值范圍是 (    )

          A.                                 B.

          C.                                  D.

           

          查看答案和解析>>

          科目:高中數學 來源:黑龍江省2012屆高二下學期期末考試數學(理) 題型:解答題

          已知函數是定義在上的奇函數,且

          (1)確定函數的解析式;

          (2)判斷并證明的單調性;

          (3)解不等式

           

          查看答案和解析>>

          同步練習冊答案