日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,橢圓C:
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,上頂點(diǎn)為A,在x軸負(fù)半軸上有一點(diǎn)B,滿足AB⊥AF2.且F1為BF2的中點(diǎn).
          (1)求橢圓C的離心率;
          (2)D是過(guò)A,B,F(xiàn)2三點(diǎn)的圓上的點(diǎn),D到直線l:x-
          3
          y-3=0的最大距離等于橢圓長(zhǎng)軸的長(zhǎng),求橢圓C的方程.
          分析:(1)由題意求出F2(c,0),A(0,b),設(shè)B(x0,0),根據(jù)向量
          AF2
          AB
          利用數(shù)量積建立關(guān)系式,算出x0=-
          b 2
          c
          ,再由F1為BF2中點(diǎn)化簡(jiǎn)得a2=4c2,從而求出橢圓C的離心率;
          (2)由(1)的結(jié)論得到F2、B的坐標(biāo),從而得到△ABF2的外接圓圓心為F1(-
          1
          2
          a,0),半徑r=a.利用點(diǎn)到直線的距離公式,結(jié)合題意建立關(guān)于a的方程,解之得a=2,進(jìn)而得到c=1且b=
          3
          ,可得橢圓C的方程.
          解答:解:(1)設(shè)B(x0,0),由F2(c,0),A(0,b),
          AF2
          =(c,-b),
          AB
          =(x0,-b)
          AF2
          AB
          ,∴cx0+b2=0,解之得x0=-
          b 2
          c
          ,
          ∵F1為BF2中點(diǎn),∴-
          b 2
          c
          +c=-2c,化簡(jiǎn)得b2=3c2=a2-c2,即a2=4c2,
          故a=2c,可得橢圓C的離心率e=
          c
          a
          =
          1
          2
          ;
          (2)由(1)知c=
          1
          2
          a,于是F2
          1
          2
          a,0),B(-
          3
          2
          a,0),
          △ABF2的外接圓圓心為F1(-
          1
          2
          a,0),半徑r=a,
          ∵D到直線l:x-
          3
          y-3=0的最大距離等于2a,∴圓心到直線的距離為a,
          可得
          |-
          1
          2
          a-3|
          2
          =a
          ,解之得a=2,得到c=1且b=
          3

          ∴橢圓C的方程為
          x2
          4
          +
          y2
          3
          =1.
          點(diǎn)評(píng):本題給出橢圓滿足的條件,求橢圓的離心率和方程.著重考查了橢圓的標(biāo)準(zhǔn)方程、簡(jiǎn)單幾何性質(zhì)和直線與圓的位置關(guān)系等知識(shí),屬于中檔題.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          精英家教網(wǎng)如圖,橢圓C:
          x2
          a2
          +
          y2
          2
          =1
          焦點(diǎn)在x軸上,左、右頂點(diǎn)分別為A1、A,上頂點(diǎn)為B,拋物線C1、C2分別以A、B為焦點(diǎn),其頂點(diǎn)均為坐標(biāo)原點(diǎn)O.C1與C2相交于直線y=
          2
          x
          上一點(diǎn)P.
          (Ⅰ)求橢圓C及拋物線C1、C2的方程;
          (Ⅱ)若動(dòng)直線l與直線OP垂直,且與橢圓C交于不同兩點(diǎn)M、N,已知點(diǎn)Q(-
          2
          ,0),求
          QM
          .
          QN
          的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2008•閘北區(qū)二模)如圖,橢圓C:
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)
          ,A1、A2為橢圓C的左、右頂點(diǎn).
          (Ⅰ)設(shè)F1為橢圓C的左焦點(diǎn),證明:當(dāng)且僅當(dāng)橢圓C上的點(diǎn)P在橢圓的左、右頂點(diǎn)時(shí)|PF1|取得最小值與最大值;
          (Ⅱ)若橢圓C上的點(diǎn)到焦點(diǎn)距離的最大值為3,最小值為1.求橢圓C的標(biāo)準(zhǔn)方程;
          (Ⅲ)若直線l:y=kx+m與(Ⅱ)中所述橢圓C相交于A,B兩點(diǎn)(A,B不是左右頂點(diǎn)),且滿足AA2⊥BA2,求證:直線l過(guò)定點(diǎn),并求出該定點(diǎn)的坐標(biāo).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          如圖,橢圓C:
          x2
          a2
          +
          y2
          a2-1
          =1
          的左右頂點(diǎn)分別為A、B,左右焦點(diǎn)分別為F1、F2,P為以F1、F2為直徑的圓上異于F1、F2的動(dòng)點(diǎn),直線PF1、PF2分別交橢圓C于M、N和D、E.
          (1)證明:
          AP
          BP
          為定值K;
          (2)當(dāng)K=-2時(shí),問(wèn)是否存在點(diǎn)P,使得四邊形DMEN的面積最小,若存在,求出最小值和P坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          如圖,橢圓C:
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)
          的頂點(diǎn)為A1、A2、B1、B2,焦點(diǎn)為F1
          F2,|A1B1|=
          7
          ,
          S?A1B1A2B 2=2S?B1F1B2F 2
          (1)求橢圓C的方程;
          (2)設(shè)l是過(guò)原點(diǎn)的直線,直線n與l垂直相交于P點(diǎn),且n與橢圓相交于A,B兩點(diǎn),|OP|=1,求
          AP
          PB
          的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          (2011•重慶三模)光線被曲線反射,等效于被曲線在反射點(diǎn)處的切線反射.已知光線從橢圓的一個(gè)焦點(diǎn)出發(fā),被橢圓反射后要回到橢圓的另一個(gè)焦點(diǎn);光線從雙曲線的一個(gè)焦點(diǎn)出發(fā)被雙曲線反射后的反射光線等效于從另一個(gè)焦點(diǎn)發(fā)出;如圖,橢圓C:
          x2
          a2
          +
          y2
          b2
          =1(a>b>0)
          與雙曲線C′:
          x2
          m2
          -
          y2
          n2
          =1(m>0,n>0)
          有公共焦點(diǎn),現(xiàn)一光線從它們的左焦點(diǎn)出發(fā),在橢圓與雙曲線間連續(xù)反射,則光線經(jīng)過(guò)2k(k∈N*)次反射后回到左焦點(diǎn)所經(jīng)過(guò)的路徑長(zhǎng)為( 。

          查看答案和解析>>