日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,在四棱錐P﹣ABCD中,PD⊥平面ABCD,底面ABCD是菱形,∠BAD=60°,AB=2,PD= ,O為AC與BD的交點,E為棱PB上一點. (Ⅰ)證明:平面EAC⊥平面PBD;
          (Ⅱ)若PD∥平面EAC,求三棱錐P﹣EAD的體積.

          【答案】解:(Ⅰ)證明:∵PD⊥平面ABCD,AC平面ABCD, ∴AC⊥PD.∵四邊形ABCD是菱形,∴AC⊥BD,
          又∵PD∩BD=D,AC⊥平面PBD.
          而AC平面EAC,∴平面EAC⊥平面PBD.
          (Ⅱ)解:∵PD∥平面EAC,平面EAC∩平面PBD=OE,
          ∴PD∥OE,
          ∵O是BD中點,∴E是PB中點.
          取AD中點H,連結(jié)BH,∵四邊形ABCD是菱形,∠BAD=60°,
          ∴BH⊥AD,又BH⊥PD,AD∩PD=D,∴BD⊥平面PAD,

          = =

          【解析】(Ⅰ)由已知得AC⊥PD,AC⊥BD,由此能證明平面EAC⊥平面PBD.(Ⅱ)由已知得PD∥OE,取AD中點H,連結(jié)BH,由此利用 ,能求出三棱錐P﹣EAD的體積.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如果sin3θ﹣cos3θ>cosθ﹣sinθ,且θ∈(0,2π),那么角θ的取值范圍是(
          A.
          B.
          C.
          D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】若圓的一條直徑的兩個端點分別是(﹣1,3)和(5,﹣5),則此圓的方程是(
          A.x2+y2+4x+2y﹣20=0
          B.x2+y2﹣4x﹣2y﹣20=0
          C.x2+y2﹣4x+2y+20=0
          D.x2+y2﹣4x+2y﹣20=0

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù).

          (1)若有三個極值點,求的取值范圍;

          (2)若對任意都恒成立的的最大值為,證明: .

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)的圖象在處的切線過點 .

          (1)若,求函數(shù)的極值點;

          (2)設(shè)是函數(shù)的兩個極值點,若,證明: .(提示

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】選修4-4;坐標(biāo)系與參數(shù)方程

          在直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)).在以坐標(biāo)原點為極點, 軸正半軸為極軸的極坐標(biāo)中,曲線

          (Ⅰ)求直線的普通方程和曲線的直角坐標(biāo)方程.

          (Ⅱ)求曲線上的點到直線的距離的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)f(x)= +log2017(2﹣x)的定義域為(
          A.(﹣2,1]
          B.[1,2]
          C.[﹣1,2)
          D.(﹣1,2)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知曲線, ,則下列說法正確的是( )

          A. 上各點橫坐標(biāo)伸長到原來的2倍,縱坐標(biāo)不變,再把得到的曲線向右平移個單位長度,得到曲線

          B. 上各點橫坐標(biāo)伸長到原來的2倍,縱坐標(biāo)不變,再把得到的曲線向右平移個單位長度,得到曲線

          C. 把曲線向右平移個單位長度,再把得到的曲線上各點橫坐標(biāo)縮短到原來的,縱坐標(biāo)不變,得到曲線

          D. 把曲線向右平移個單位長度,再把得到的曲線上各點橫坐標(biāo)縮短到原來的,縱坐標(biāo)不變,得到曲線

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖所示,四棱錐的底面是梯形,且, 平面, 中點,

          )求證: 平面;

          )若, ,求直線與平面所成角的大。

          查看答案和解析>>

          同步練習(xí)冊答案