【題目】已知函數(shù)的圖象與
軸相切,且切點在
軸的正半軸上.
(1)若函數(shù)在
上的極小值不大于
,求
的取值范圍;
(2)設(shè),證明:
在
上的最小值為定值.
【答案】(1);(2)定值
【解析】試題分析:(1)函數(shù)的圖象與
軸相切可得
。所以
,
,對
分類討論可得①當(dāng)
時,
無極值;②當(dāng)
時,
在
處取得極小值;③當(dāng)
時,
在
上無極小值。綜上得當(dāng)當(dāng)
時,
在
上有極小值
,解得
。(2)
,所以
,令
,則
,分析可得
,故
在
上遞增,因此
,所以當(dāng)
時,
單調(diào)遞減;當(dāng)
時,
單調(diào)遞增。故
為定值。
試題解析:
(1)解:∵,
∴令得
,
由題意可得,∴
.
∴,
∴,
①當(dāng),即
時,
無極值.
②當(dāng),即
時,
令得
;
令得
或
,
∴ 當(dāng)時,
有極小值.
③當(dāng),即
時,
在
上無極小值。
綜上可得當(dāng)時,
在
上有極小值,且極小值為
,
即.
∵,
∴,
解得 ,
又,
∴。
∴ 實數(shù)的取值范圍為
。
(2)證明:由條件得,
,
設(shè),
則,
∵,∴
,
又,
∴,
∴,
∴在
上遞增,
∴.
由得
;由
得
.
∴當(dāng)時,
單調(diào)遞減;當(dāng)
時,
單調(diào)遞增。
∴ 當(dāng)時,
有極小值,也為最小值,且
為定值.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線l經(jīng)過拋物線y2=4x的焦點F,且與拋物線相交于A、B兩點.
(1)若AF=4,求點A的坐標(biāo);
(2)求線段AB的長的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),.
(1)求函數(shù)的單調(diào)性;
(2)如果對任意的,都有
成立,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線
與拋物線
相交于不同的
兩點.
(1)如果直線過拋物線的焦點,求
的值;
(2)如果
,證明:直線
必過一定點,并求出該定點.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:的離心率為
,點P(1,
)在橢圓C上,直線l過橢圓的右焦點與橢圓相交于A,B兩點.
(1)求橢圓C的方程;
(2)在x軸上是否存在定點M,使得為定值?若存在,求定點M的坐標(biāo);若不在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)有4個人去參加某娛樂活動,該活動有甲、乙兩個游戲可供參加者選擇.為增加趣味性,約定:每個人通過擲一枚質(zhì)地均勻的骰子決定自己去參加哪個游戲,擲出點數(shù)為1或2的人去參加甲游戲,擲出點數(shù)大于2的人去參加乙游戲.
(1)求這4個人中恰有2個人去參加甲游戲的概率;
(2) 用X表示這4個人中去參加乙游戲的人數(shù),求隨機變量X的分布列與數(shù)學(xué)期望E(X).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從某保險公司的推銷員中隨機抽取50名,統(tǒng)計這些推銷員某月的月銷售額(單位:千元),由統(tǒng)計結(jié)果得如圖頻數(shù)分別表:
月銷售額 分組 | [12.25,14.75) | [14.75,17.25) | [17.25,19.75) | [19.75,22.25) | [22.25,24.75) |
頻數(shù) | 4 | 10 | 24 | 8 | 4 |
(1)作出這些數(shù)據(jù)的頻率分布直方圖;
(2)估計這些推銷員的月銷售額的平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點作代表);
(3)根據(jù)以上抽樣調(diào)查數(shù)據(jù),公司將推銷員的月銷售指標(biāo)確定為17.875千元,試判斷是否有60%的職工能夠完成該銷售指標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某位同學(xué)進行社會實踐活動,為了對白天平均氣溫與某奶茶店的某種飲料銷量之間的關(guān)系進行分析研究,他分別記錄了12月11日至12月15日的白天平均氣溫 (℃)與該小賣部的這種飲料銷量
(杯),得到如下數(shù)據(jù):
日期 | 12月11日 | 12月12日 | 12月13日 | 12月14日 | 12月15日 |
平均氣溫 | 9 | 10 | 12 | 11 | 8 |
銷量 | 23 | 25 | 30 | 26 | 21 |
(1)請根據(jù)所給五組數(shù)據(jù),求出關(guān)于
的線性回歸方程
;
(2)據(jù)(1)中所得的線性回歸方程,若天氣預(yù)報12月16日的白天平均氣溫7(℃),請預(yù)測該奶茶店這種飲料的銷量. (參考公式:,
)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)是數(shù)列
的前
項和,已知
,
.
(Ⅰ)求數(shù)列的通項公式;
(Ⅱ)令,數(shù)列
的前
項和為
,求
.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com