日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖所示的幾何體中,四邊形ABCD為等腰梯形,AB∥CD,AB=2AD=2,∠DAB=60°,四邊形CDEF為正方形,平面CDEF⊥平面ABCD.
          (Ⅰ)若點(diǎn)G是棱AB的中點(diǎn),求證:EG∥平面BDF;
          (Ⅱ)求直線AE與平面BDF所成角的正弦值;
          (Ⅲ)在線段FC上是否存在點(diǎn)H,使平面BDF⊥平面HAD?若存在,求 的值;若不存在,說(shuō)明理由.

          【答案】(I)證明:∵四邊形ABCD為等腰梯形,AB∥CD,AB=2AD=2,∠DAB=60°, ∴CD=AB﹣2ADcos60°=1,即CD= AB.
          ∵CD EF,CD AB,又BG= AB,
          ∴EF BG,
          ∴四邊形EFBG是平行四邊形,
          ∴EG∥BF,
          又EG平面BDF,BF平面BDF,
          ∴EG∥平面BDF
          (II)解:∵AD=1,AB=2,∠DAB=60°,∴BD= =
          ∴AD2+BD2=AB2 , ∴AD⊥BD.
          ∵平面CDEF⊥平面ABCD,平面CDEF∩平面ABCD=CD,DE⊥CD,
          ∴DE⊥平面ABCD.
          以D為原點(diǎn),以直線DA,DC,DE為坐標(biāo)軸建立空間直角坐標(biāo)系D﹣xyz,如圖所示:
          則A(1,0,0),E(0,0,1),B(0, ,0),D(0,0,0),F(xiàn)(﹣ ,1)
          =(﹣1,0,1), =(0, ,0), =(﹣ ,1),
          設(shè)平面BDF的法向量為 =(x,y,z),則 , =0,
          ,令z=1得 =(2,0,1),
          ∴cos< >= = =﹣
          設(shè)直線AE與平面BDF所成角為θ,則sinθ=|cos< >|=
          (Ⅲ)解:設(shè)H(﹣ , ,h),(0≤h≤1)
          當(dāng)h=0時(shí),顯然平面BDF與平面HAD不垂直,
          =(﹣ , ,h), =(1,0,0),
          設(shè)平面HAD的法向量為 =(x,y,z),則 ,
          ,令y= =(0, ,﹣ ).
          假設(shè)存在點(diǎn)H,使得平面BDF⊥平面HAD,則 ,
          =﹣ =0,方程無(wú)解.
          ∴線段FC上不存在點(diǎn)H,使平面BDF⊥平面HAD.

          【解析】(I)求出CD=1,證明四邊形EFBG是平行四邊形得出EG∥BF即可得出EG∥平面BDF;(II)建立空間坐標(biāo)系,求出平面BDF的法向量 的坐標(biāo),則直線AE與平面BDF所成角的正弦值為|cos< >|;(III)假設(shè)存在H點(diǎn)滿足條件,求出平面HAD的法向量 ,令 =0,根據(jù)方程是否有解得出結(jié)論.
          【考點(diǎn)精析】利用直線與平面平行的判定和平面與平面垂直的判定對(duì)題目進(jìn)行判斷即可得到答案,需要熟知平面外一條直線與此平面內(nèi)的一條直線平行,則該直線與此平面平行;簡(jiǎn)記為:線線平行,則線面平行;一個(gè)平面過(guò)另一個(gè)平面的垂線,則這兩個(gè)平面垂直.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù)f(x)=cos(x+ ),則要得到其導(dǎo)函數(shù)y=f′(x)的圖象,只需將函數(shù)y=f(x)的圖象(
          A.向右平移 個(gè)單位
          B.向左平移 個(gè)單位
          C.向右平移 個(gè)單位
          D.向左平移 個(gè)單位

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,已知四邊形ABEF于ABCD分別為正方形和直角梯形,平面ABEF⊥平面ABCD,AB=BC= AD=1,AB⊥AD,BC∥AD,點(diǎn)M是棱ED的中點(diǎn).

          (1)求證:CM∥平面ABEF;
          (2)求三棱錐D﹣ACF的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】由于研究性學(xué)習(xí)的需要,中學(xué)生李華持續(xù)收集了手機(jī)“微信運(yùn)動(dòng)”團(tuán)隊(duì)中特定20名成員每天行走的步數(shù),其中某一天的數(shù)據(jù)記錄如下: 5860 6520 7326 6798 7325
          8430 8215 7453 7446 6754
          7638 6834 6460 6830 9860
          8753 9450 9860 7290 7850
          對(duì)這20個(gè)數(shù)據(jù)按組距1000進(jìn)行分組,并統(tǒng)計(jì)整理,繪制了如下尚不完整的統(tǒng)計(jì)圖表:
          步數(shù)分組統(tǒng)計(jì)表(設(shè)步數(shù)為x)

          組別

          步數(shù)分組

          頻數(shù)

          A

          5500≤x<6500

          2

          B

          6500≤x<7500

          10

          C

          7500≤x<8500

          m

          D

          8500≤x<9500

          2

          E

          9500≤x<10500

          n

          (Ⅰ)寫出m,n的值,若該“微信運(yùn)動(dòng)”團(tuán)隊(duì)共有120人,請(qǐng)估計(jì)該團(tuán)隊(duì)中一天行走步數(shù)不少于7500步的人數(shù);
          (Ⅱ)記C組步數(shù)數(shù)據(jù)的平均數(shù)與方差分別為v1 ,E組步數(shù)數(shù)據(jù)的平均數(shù)與方差分別為v2 , ,試分別比較v1與v2 , 的大小;(只需寫出結(jié)論)
          (Ⅲ)從上述A,E兩個(gè)組別的步數(shù)數(shù)據(jù)中任取2個(gè)數(shù)據(jù),求這2個(gè)數(shù)據(jù)步數(shù)差的絕對(duì)值大于3000步的概率.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù)f(x)=sin(ωx﹣φ), 的圖象經(jīng)過(guò)點(diǎn) ,且相鄰兩條對(duì)稱軸的距離為 . (Ⅰ)求函數(shù)f(x)的解析式及其在[0,π]上的單調(diào)遞增區(qū)間;
          (Ⅱ)在△ABC中,a,b,c分別是A,B,C的對(duì)邊,若 ,求∠A的大。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】設(shè)P為曲線C1上動(dòng)點(diǎn),Q為曲線C2上動(dòng)點(diǎn),則稱|PQ|的最小值為曲線C1 , C2之間的距離,記作d(C1 , C2).若C1:x2+y2=2,C2:(x﹣3)2+(y﹣3)2=2,則d(C1 , C2)=;若C3:ex﹣2y=0,C4:lnx+ln2=y,則d(C3 , C4)=

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,半徑為5cm的圓形紙板內(nèi)有一個(gè)相同圓心的半徑為1cm的小圓,現(xiàn)將半徑為1cm的一枚硬幣拋到此紙板上,使整塊硬幣完全隨機(jī)落在紙板內(nèi),則硬幣與小圓無(wú)公共點(diǎn)的概率為(
          A.
          B.
          C.
          D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知各項(xiàng)均不相等的等差數(shù)列{an}滿足a1=1,且a1 , a2 , a5成等比數(shù)列.
          (1)求{an}的通項(xiàng)公式;
          (2)若bn=(﹣1)n (n∈N*),求數(shù)列{bn}的前n項(xiàng)和Sn

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù)f(x)=lnx+ ﹣1,a∈R.
          (1)若關(guān)于x的不等式f(x)≤ x﹣1在[1,+∞)上恒成立,求a的取值范圍;
          (2)設(shè)函數(shù)g(x)= ,若g(x)在[1,e2]上存在極值,求a的取值范圍,并判斷極值的正負(fù).

          查看答案和解析>>

          同步練習(xí)冊(cè)答案