日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (本題滿分12分)如圖,在平面直坐標系中,已知橢圓,經(jīng)過點,其中e為橢圓的離心率.且橢圓與直線 有且只有一個交點。

          (Ⅰ)求橢圓的方程;

          (Ⅱ)設不經(jīng)過原點的直線與橢圓相交與AB兩點,第一象限內的點在橢圓上,直線平分線段,求:當的面積取得最大值時直線的方程。

           

          【答案】

          (Ⅰ);(Ⅱ)。

          【解析】

          試題分析:(Ⅰ)∵橢圓經(jīng)過點,∴

          ,∴  

          ∴橢圓的方程為…………………………………………2分

          又∵橢圓與直線 有且只有一個交點

          ∴方程有相等實根

              ∴ 

          ∴橢圓的方程為………………………………………………5分

          (Ⅱ)由(Ⅰ)知橢圓的方程為 故

          設不經(jīng)過原點的直線的方程交橢圓

              ……………………………6分

            ………………7分       

          直線方程為平分線段 

          =解得 ……………………………………………8分

          又∵點到直線的距離 

          …………………………………………9分

              

          由直線與橢圓相交于AB兩點可得

          求導可得,此時取得最大值

          此時直線的方程……………………………………………12分

          考點:本題主要考查橢圓標準方程,橢圓的幾何性質,直線與橢圓的位置關系,直線方程,點到直線的距離。

          點評:求橢圓的標準方程是解析幾何的基本問題,涉及直線與橢圓的位置關系問題,常常運用韋達定理,本題屬于中檔題。

           

          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源:2014屆江西高安中學高二上期末考試理科數(shù)學試卷(解析版) 題型:解答題

          (本題滿分12分)

          如圖所示的幾何體是由以正三角形為底面的直棱柱被平面所截而得. ,的中點.

          (1)當時,求平面與平面的夾角的余弦值;

          (2)當為何值時,在棱上存在點,使平面?

           

          查看答案和解析>>

          科目:高中數(shù)學 來源:2012-2013學年湖北省八市高三3月聯(lián)考理科數(shù)學試卷(解析版) 題型:解答題

          (本題滿分12分)如圖,在長方體中,已知上下兩底面為正方形,且邊長均為1;側棱,為中點,中點,上一個動點.

          (Ⅰ)確定點的位置,使得;

          (Ⅱ)當時,求二面角的平

          面角余弦值.

           

          查看答案和解析>>

          科目:高中數(shù)學 來源:2011-2012學年廣西桂林中學高三7月月考試題理科數(shù)學 題型:解答題

          (本題滿分12分)如圖,在四棱錐P—ABCD中,底面ABCD為正方形,PD⊥平面ABCD,且PD=AB=2,E是PB的中點,F(xiàn)是AD的中點.

           ⑴求異面直線PD與AE所成角的大;

           ⑵求證:EF⊥平面PBC ;

           ⑶求二面角F—PC—B的大。.

           

           

          查看答案和解析>>

          科目:高中數(shù)學 來源:2011年湖南省招生統(tǒng)一考試文科數(shù)學 題型:解答題

           

          (本題滿分12分)

          如圖3,在圓錐中,已知的直徑的中點.

          (I)證明:

          (II)求直線和平面所成角的正弦值.

           

           

          查看答案和解析>>

          科目:高中數(shù)學 來源:2010年海南省高三五校聯(lián)考數(shù)學(文) 題型:解答題

          (本題滿分12分)

          如圖,三棱錐S—ABC中,AB⊥BC,D、E分別為AC、BC的中點,SA=SB=SC。

             (1)求證:BC⊥平面SDE;

             (2)若AB=BC=2,SB=4,求三棱錐S—ABC的體積。

           

          查看答案和解析>>

          同步練習冊答案