日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,在直三棱柱ABC-A1B1C1中,已知∠ACB=90°,BC=CC1,E、F分別為AB、AA1的中點.
          (1)求證:直線EF∥平面BC1A1
          (2)求證:EF⊥B1C.
          分析:(1)欲證直線EF∥平面BC1A1,只需證明EF平行平面BC1A1中的一條直線即可,由E、F分別為AB、AA1的中點,可知
          EF∥A1B,EF∥A1B?平面BC1A1,問題得證.
          (2)欲證EF⊥B1C,只需證明EF的平行線A1B垂直于B1C即可,也即證明B1C垂直于A1B所在的平面BA1C1,又須證明B1C垂直于平面BA1C1中的兩條相交直線,由三棱柱ABC-A1B1C1為直三棱柱,以及∠ACB=90°,BC=CC1,極易證明BC1⊥B1C,A1C1⊥B1C,
          而BC1,A1C1為平面BA1C1中的兩條相交直線,問題得證.
          解答:解:(1)∵E、F分別為AB、AA1的中點,∴EF∥A1B
          ∵EF?平面BC1A1,A1B⊆平面BC1A1
          ∴EF∥平面BC1A1
          (2)∵∠ACB=90°,∴AC⊥BC,
          ∵三棱柱ABC-A1B1C1為直三棱柱,∴AC⊥CC1
          ∴AC⊥平面BB1C1C,∴AC⊥B1C,
          又∵A1C1∥AC,∴A1C1⊥B1C,
          ∵BC=CC1,BC⊥CC1,∴BC1⊥B1C
          ∴B1C⊥平面BA1C1,∴B1C⊥A1B
          由(1)知,EF∥A1B
          ∴EF⊥B1C.
          點評:本題主要考察了空間的線面平行,線線垂直的證明,充分考察了學生的邏輯推理能力,空間想象力,以及識圖能力.
          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:

          如圖,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一P是AD的延長線與A1C1的延長線的交點,且PB1∥平面BDA.

          (I)求證:CD=C1D:

          (II)求二面角A-A1D-B的平面角的余弦值; 

          (Ⅲ)求點C到平面B1DP的距離.

          查看答案和解析>>

          科目:高中數(shù)學 來源:2011年四川省招生統(tǒng)一考試理科數(shù)學 題型:解答題

           

           (本小題共l2分)

              如圖,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一[來源:]

          P是AD的延長線與A1C1的延長線的交點,且PB1∥平面BDA.

          (I)求證:CD=C1D:

          (II)求二面角A-A1D-B的平面角的余弦值;   

          (Ⅲ)求點C到平面B1DP的距離.

           

          查看答案和解析>>

          科目:高中數(shù)學 來源:2011年高考試題數(shù)學理(四川卷)解析版 題型:解答題

           (本小題共l2分)

              如圖,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一

          P是AD的延長線與A1C1的延長線的交點,且PB1∥平面BDA.

          (I)求證:CD=C1D:

          (II)求二面角A-A1D-B的平面角的余弦值;   

          (Ⅲ)求點C到平面B1DP的距離.

           

           

           

          查看答案和解析>>

          科目:高中數(shù)學 來源:四川省高考真題 題型:解答題

          如圖,在直三棱柱AB-A1B1C1中,∠ BAC=90°,AB=AC=AA1=1,D是棱CC1上一點,P是AD的延長線與A1C1的延長線的交點,且PB1∥平面BDA。
          (I)求證:CD=C1D;
          (II)求二面角A-A1D-B的平面角的余弦值;
          (Ⅲ)求點C到平面B1DP的距離

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

              如圖,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一點,P是AD的延長線與A1C1的延長線的交點,且PB1∥平面BDA.

          (I)求證:CD=C1D:

          (II)求二面角A-A1D-B的平面角的余弦值;

          (Ⅲ)求點C到平面B1DP的距離.

          查看答案和解析>>

          同步練習冊答案