(本小題滿分12分)
如圖,在四棱錐P-ABCD中,底面ABCD為正方形,且PD

平面ABCD,PD=AB=1,E,F(xiàn)分別是PB,AD的中點
(I)證明:EF//平面PCD
(II)求二面角B-CE-F的大小
(Ⅰ)建系

如圖,取PC中點M,易知:

=

,∴

FE∥DM
又


平面PCD,

平面PCD,∴EF∥平面PCD.
(Ⅱ)∵

∴

,

⊥PB,EF⊥CB,又PB∩CB=B,

EF⊥平面PBC,而EF

平面EFC,∴平面EFC⊥平面PBC.
∴二面角B-CE-F為

.
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖,在四棱錐P-ABCD中,PA⊥底面ABCD,底面ABCD為正方形,PA=AB=2,M, N分別為PA, BC的中點.
(Ⅰ)證明:MN∥平面PCD;
(Ⅱ)求MN與平面PAC所成角的正切值.

查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
如圖正三棱錐

中,

分別是

的中點,

,且

,則正三棱錐

的體積是 ( )

查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分12分)
如圖,在四棱錐

中,

⊥底面

底面

為正方形,

,

,

分別是


的中點.
(1)求證:

;(2)設(shè)PD="AD=a," 求三棱錐B-EFC的體積.

查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分14分)
三棱

柱

中,

側(cè)棱與底面垂直,

,

,

分別是

,

的中點.
(1)求證:

平面

;
(2)求證:

平面

;
(3)求二面角

的余弦值.

查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
正四棱錐P-ABCD,B
1為PB的中點,D
1為PD的中點,
則兩個棱錐A-B
1CD
1,P-ABCD的體積之比是( )

查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分14分)
如圖(1),在直角梯形

中,


、

、

分別是線段

、

、

的中點,現(xiàn)將

折起,使平面

平面

(如圖(2)).
(Ⅰ)求證:

平面

;
(Ⅱ)取

中點為

,求證:

平面

,

查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
平面上三條直線

,如果這三條直線將平面劃
分為六部分,則實數(shù)

的所有取值為
。(將你認(rèn)為所有正確的序號都填上)
①0 ②

③1 ④2 ⑤3
查看答案和解析>>