【題目】選修4-4:坐標系與參數(shù)方程
已知曲線的極坐標方程是
,以極點為原點,極軸為
軸正方向建立平面直角坐標系,曲線
的直角坐標方程是
(
為參數(shù)).
(Ⅰ)將曲線的參數(shù)方程化為普通方程;
(Ⅱ)求曲線與曲線
交點的極坐標.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系中,曲線
的參數(shù)方程為
(
為參數(shù)),在以原點為極點,
軸正半軸為極軸的極坐標系中,直線
的極坐標方程為
.
(1)求曲線的普通方程和直線
的傾斜角;
(2)設(shè)點,直線
和曲線
交于
兩點,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖四棱錐中,
平面
,底面
是梯形,
,
,
,
,
,
為
的中點,
為
上一點,且
(
).
(1)若時,求證:
平面
;
(2)若直線與平面
所成角的正弦值為
,求異面直線
與直線
所成角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中國政府實施“互聯(lián)網(wǎng)+”戰(zhàn)略以來,手機作為客戶端越來越為人們所青睞,通過手機實現(xiàn)衣食住行消費已經(jīng)成為一種主要的消費方式,“一機在手,走遍天下”的時代已經(jīng)到來。在某著名的夜市,隨機調(diào)查了100名顧客購物時使用手機支付的情況,得到如下的列聯(lián)表,已知其中從使用手機支付的人群中隨機抽取1人,抽到青年的概率為
.
(1)根據(jù)已知條件完成列聯(lián)表,并根據(jù)此資料判斷是否有
的把握認為“市場購物用手機支付與年齡有關(guān)”?
(2)現(xiàn)采用分層抽樣從這100名顧客中按照“使用手機支付”和“不使用手機支付”中抽取得到一個容量為5的樣本,設(shè)事件為“從這個樣本中任選2人,這2人中至少有1人是不使用手機支付的”,求事件
發(fā)生的概率?
列聯(lián)表
青年 | 中老年 | 合計 | |
使用手機支付 | 60 | ||
不使用手機支付 | 24 | ||
合計 | 100 |
附:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如下圖,在平面直角坐標系xOy中,點A(0,3),直線l:y=2x-4.設(shè)圓C的半徑為1,圓心在l上.
(1)若圓心C也在直線y=x-1上,過點A作圓C的切線,求切線的方程;
(2)若圓C上存在點M,使MA=2MO,求圓心C的橫坐標a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】橢圓(
)的左、右焦點分別為
,
,過
作垂直于
軸的直線與橢圓
在第一象限交于點
,若
,且
.
(Ⅰ)求橢圓的方程;
(Ⅱ)已知點關(guān)于
軸的對稱點
在拋物線
上,是否存在直線
與橢圓交于
,使得
的中點
落在直線
上,并且與拋物線
相切,若直線
存在,求出
的方程,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了解某地區(qū)某種農(nóng)產(chǎn)品的年產(chǎn)量x(單位:噸)對價格y(單位:千元/噸)和利潤z的影響,對近五年該農(nóng)產(chǎn)品的年產(chǎn)量和價格統(tǒng)計如下表:
x | 1 | 2 | 3 | 4 | 5 |
y | 7.0 | 6.5 | 5.5 | 3.8 | 2.2 |
(1)求y關(guān)于x的線性回歸方程;
(2)若每噸該農(nóng)產(chǎn)品的成本為2千元,假設(shè)該農(nóng)產(chǎn)品可全部賣出,預(yù)測當(dāng)年產(chǎn)量為多少時,年利潤z取到最大值?(保留兩位小數(shù))
參考公式: ,
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com